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1. Introduction

In recent years, research from the fields of Natural Language Processing and Computer
Vision have been combined to tackle new exciting challenges, such as automatic image
captioning and multimodal document retrieval. Increasing computational power allows to
construct and train incredibly complex neural networks in terms of deepness and recur-
rency. This has led to fascinating results in many areas, especially for the task of scene
comprehension in combination with language modeling.

But there are several pitfalls to current approaches, that have not been faced yet. For
instance, many of these works rely on large, human-annotated data sets, which usually de-
scribe what is visually obvious and do not relate to the context of the appearing text/image.
On the other hand, unsupervised approaches rely on the assumption, that co-occurring en-
tities have a high semantic correlation, implying that they convey the exact same meaning.
This master thesis aims to understand co-occurring entities drawn from multiple modalities
(i.e. texts and images) and the context in which they appear in order to fully grasp their
interrelation and exploit the information in which they complement one another. More-
over, our approach aims to mimic human judgment to quantify the complex hidden align-
ments, which are connecting elements from different modalities. Therefore, we invented a
two-staged system combining an unsupervised and supervised learning regime to realize a
framework that can tackle complex learning problems that only require a marginal portion
of human supervision. The approach is based on conclusions drawn from observing the hu-
man learning process. Concepts are identified in massive amounts of data and generalized
in order to create a compressed representation. This process happens fully unsupervised.
With regard to the task of judging intermodal relations, such a dense compression learned
via multiple modalities (a multimodal embedding) comprises readily usable alignments of
abstract concepts. Hence, instead of aligning entities from complex input spaces (such as
images), we only learn to quantify compressed concepts in the desired manner. This re-
quires much less training data compared to supervised learning schemes that try to reveal
sensible features from the redundantly encoded input modality.

Particularly, this thesis considers textual and single-framed graphical modalities, namely
texts and images. We introduce a novel approach to rate the complex intermodal relation of
co-occurring image-text pairs. We strongly believe that this relation can be fully described
by two measurements, which we call Mutual Information and Semantic Correlation. Mu-
tual information refers to the amount of shared knowledge by means of textually stated or
visually portrayed facts, whereas semantic correlation describes the more subtle interpreta-
tion of their co-occurrence. The bridge that connects a text and an image might be vaguely
defined when exclusively considering a document that comprises these two modalities. How-
ever, background knowledge might close this gap and enable our ability to capitalize their
complementary information.

Motivated by recent success in deep learning, we would like to go a step further and model
human-near capabilities for the task of multimodal document comprehension. Therefore,
we build on recently developed models for the tasks of object recognition and language
modeling. Our model maps multimodal documents onto a mutual embedding space, that
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should be interpreted as a machine readable document representation. We use the popular
InceptionV3 [60] model to encode images. The overall encoding architecture is based on
the Neural Image Caption Generator from Google [64], except that our text encoding is
hierarchical to allow the comprehension of sentences as entities that appear in the context of
a variable-sized text. As mentioned above, the interdependence of co-occurring modalities
is usually hard or impossible to grasp without the contribution of extensive background
knowledge. We are facing this problem by training an autoencoder network over a large
dataset before we train a prediction network for our handcrafted measurements.

To allow the autoencoder to generalize and cluster even abstract concepts, we combined
multiple datasets in order to obtain a wide variety of distinctly perceived intermodal re-
lations. Part of the dataset is drawn from encyclopedia articles to encode properties and
entities from the world (general knowledge). Therefore, articles have been retrieved via an
implemented Web crawler. Samples from two other, already existing datasets have been
taken to enrich the newly generated dataset, a news corpora and a human generated image-
caption dataset. News articles shall contribute rather complex intermodal relations to our
overall dataset. The relations of samples taken from an image-caption dataset are quite
explicit and uniform, as the captions state visual obvious content. The broad range of doc-
ument sources shall allow the system to properly learn how the two considered modalities
are used by humans to convey information.

Having a dense feature representation of multimodal documents, a classifier is trained
to predict Mutual Information and Semantic Correlation. To accomplish this task, we
invented an annotation scheme for both measurements and annotated over 750 samples
from two different datasets. In addition, 100 samples have been heuristically annotated to
reduce label imbalance.

We accomplished results that are much better than random predictions, setting an initial
baseline for future work in this field.

There is a wide variety of applications that can be directly realized from a system that is
similarly well suited as humans when judging intermodal relations. For instance, sentences
describing an enclosed image could be extracted from a text. Potentially leading to auto-
matically generated data copora that are large enough to allow further improvements on
image captioning tasks or to utilize these systems to generate descriptions for information
graphics. Moreover, most of the developed methodologies can be easily transfered to other
modality pairs (e.g. text and video).

This thesis will be structured as follows. In chapter 2 we are going to present related
work. Chapter 3 gives an overview over the methods and formalism used to accomplish our
goal and justifies the usage of deep learning models. It will also give a detailed introduction
into neural networks with all principles necessary to understand this thesis. Subsequently,
in chapter 4 we will explain our ideas and intuitions. The chapter will comprise a detailed
overview of the utilized datasets and will elaborately outline the chosen labels and the
annotation process followed by the presentation of the architectures we used to build our
deep neural networks. We will present the conducted experiments and their outcomes in
chapter 5. Afterwards, we will outline a subset of possible applications, that can be derived
from our research in chapter 6 and finally close this thesis in chapter 7 with some concluding
remarks and proposals for future work in this field.
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2. Related Work

To the best of our knowledge, there has been no attempt yet to directly investigate the
information discrepancy between textual and graphical representations in an approach sim-
ilar to ours. However, there have been plenty of closely related studies, that we are going
to briefly outline in this chapter.

2.1. Language Processing combined with Computer Vision

Tremendous success has been achieved in recent years when it comes to the tasks of image-
sentence retrieval and image description generation. The availability of extensive annotated
datasets as well as the immense progress in computational power have led to several ap-
proaches in facing those problems. Kulkarni et al. [40] are generating image descriptions
by using a CRF to maximize the score of a labeled graph. These labels include scores for
detected objects, object attributes and spatial relations between objects. Given a labeling
that maximizes the score, they generate a description either template-based or based on
a language model. Such an approach relies heavily on the underlying systems for object,
object-attribute and spatial-relation detection. Yet, there have been substantial improve-
ments over recent years in this fields, even meeting near-human capabilities on certain
datasets [18, 39]. Despite their promising results, we believe that their architecture has a
structural drawback that will prevent such systems from reaching human capabilities. Due
to the complete decoupling of generated text and original image, that is because of the
intermediate stage of generating a labeled graph with human-picked labels, there is no way
to express semantics in the final description, which are shown in the image but cannot be
encoded in the graph labels.

Vinyals et al. [64] generate image captions by transforming an image in a compact rep-
resentation via Convolutional Neural Networks (CNN) and then using a Recurrent Neural
Network (RNN), conditioned on the image and previous predicted words, to produce sen-
tences. Their system is trained in an end-to-end fashion, such that any detail resp. context
could be revealed by the hidden structure. We think, that deep learning methods are the
key to success in those learning problems on the edge between CV and NLP, which we try
to convey on section 3.3.

One interesting idea is to think of the syntactics and semantics of images resp. texts as
laying in a hidden latent space, where both representations can be projected onto [21, 23,
33, 34, 45, 48, 64, 67]. There are several elaborated methods that do not directly incorporate
neural networks when defining the projection. Gong et al. [23] lists some of them. While
they gain their feature vectors through neural nets, they still provide the transformation
rule, whose parameters have to be learned. The same applies to the nonlinear version of
Latent Semantic Analysis (LSA) introduced by Liu and Tang [45] (though, their results
arise from handcrafted features). Again, we do not think it is constructive to hold on
to a specific kind of transformation for the same reason as we dismiss hand-engineered
features. The transformation rule from the graphical resp. textual representation space
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onto the latent embedding space is simply unknown1. Therefore, it seems to be wise to
make no assumptions about how the transformation might look like, since neural nets can
theoretically approximate any nonlinear mapping [30].

The approach which proofed to be most promising is presented in its basic form by Mao
et al. [48]. They project images via a CNN and sentences via a RNN onto a multimodal
embedding space. Their system is trained by predicting the probability of the next word in
an image description given the image and the previous words. Frome et al. [21] make use of
large text corpora by pretraining context-sensible word embeddings and projecting images
onto this embedding space. This does not just allow sensible results even if the prediction
does not match the ground truth, but also enables zero-shot-learning, thus identifying ob-
jects not appearing in the image-sentence training corpus. A more fine-grained approach
has been recently proposed by Karpathy and Li [33] and Karpathy et al. [34]. They inten-
tionally assimilate decompositions of their representations (in addition to the pure input)
and ensure that those match up in the embedding space as well. They consider either de-
pendency tree relations [34] or bidirectional neural networks (to better model the context
of words) [33] as decompositions of sentences and object detections as decompositions for
images. Their key insight is, that text snippets usually refer to a specific region of an image.
Similar to this approach is the work by Yan and Mikolajczyk [67]. They extracted image
resp. text features through deep neural networks and aligned those vectors through an ob-
jective. Image features were extracted using AlexNet [39] and text features were generated
from TF-IDF histograms using a deep neural network with fully-connected layers. They use
Canonical Correlation Analysis (CCA) to align the embeddings. To overcome shortcomings
from prior work, that suffered from small feature vectors due to computational issues, they
have constructed an efficient GPU implementation, that allows feature vectors that are two
orders of magnitude higher than prior work (specifically, they used feature vectors of size
4096).

A general advantage of multimodal embeddings is that they can be used in a number of
application, e.g. for image-sentence retrieval tasks by using ranking algorithms or for text
generation by training a network above the embedding space. Ngiam et al. [52] show that
multimodal embeddings learned via autoencoders can even enhance results on tasks that do
not obviously incorporate more than one modality. For instance, for a task such as speech
recognition, they showed that adding additional features learned over several modalities can
improve the outcome compared to audio-only features.

Figure 2.1 depicts the current state-of-the-art for image caption generation systems. Both
systems make use of a multimodal embedding space.

Another common technique to confront problems comprising multiple modalities are prob-
abilistic models to estimate a generative or discriminative model. While these techniques
have not been able to keep up with neural networks in tasks that require to learn a com-
plex but hidden structure, such as language models [38], they should still be considered
for tasks with direct alignments, such as image tagging, possibly by incorporating neural
feature extraction. Barnard et al. [3] are mainly examining the problems of tagging an
image with highly related words and of finding direct correspondences of visual and textual
words. Although their results are outperformed compared to recent deep learning systems
(e.g. [33, 67]), they give a comprehensive and well-arranged overview over various proba-
bilistic methods to tackle these problems. Fang et al. [17] implemented a caption-generation

1assuming that such a hidden latent space exists
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(a) Captions generated with the tool Neu-
ralTalk2 developed by Karpathy and Li
[33] (image source: [33])

(b) Captions generated with the NIC (Neu-
ral Image Caption) model developed by
Vinyals et al. [64] (image source: [64])

Figure 2.1.: Examples that illustrate the capabilities of current state-of-the-art-systems for
automatic image caption generation. Both systems make use of multimodal
embeddings in a deep neural network architecture.

system that was state of the art by many metrics at the time of writing2 and does utilize
a probabilistic language model. However, this language model does involve detections of
words with a high likelihood of being associated with the image. These detection have
been computed using a deep CNN. Additionally, generated captions are ranked based on a
similarity measure that is computed on a neural multimodal embedding space. Neverthe-
less, the work proves that there are alternatives to pure neural architectures that are worth
considering.

Yet another way to convey information compactly through a graphical manner is by using
tables. There is an interesting system designed by Bin Shao [5], which aims to understand
tables by exploiting a huge knowledge base, i.e. Probase [29]. This knowledge base is
structured into concepts (e.g. countries), entities (e.g. Germany) and attributes (e.g. area,
population, . . . ). The first step in understanding is to detect or generate a header row
and then subsequently identify the column containing the entities. They use the gained
information to build a search engine, which generates statements from tables given a query.
It is further used to enrich the taxonomy of Probase.

Other graphical representations should not go unmentioned, such as charts, plots or maps,
as they are crucial in the transmission of knowledge, since they can express information in
a succinct and compact way. There is a variety of work that focuses on the understanding
of information graphics [12, 16, 50]. Regrettably, no recent work in this area is known to us,
especially no studies that incorporate the use of deep learning methods. This is probably
owed to the fact that there are no adequate datasets available. The works that we are aware
of are heavily based on assumptions, restrictions and templates and are not comparable to
the performance of current image caption generation systems. Another pitfall that has not
been tackled yet is that information graphics are usually described in an accompanied text
and cannot be considered as individual self-explanatory entities.

Up until this point, most of the cited work examines the generation of text given a graph-
ical representation. On the other hand, the generation of images from a textual description
is a key element of human imagination and human fantasy and therewith essential for

2Interesting is a comparison that has been made by 250 human raters. 34% of the generated captions have
been rated as better or equally good compared to human-generated reference sentences.
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Figure 2.2.: Illustrating what a deep neural network learns by operating it in reverse mode
[51].

knowledge inference and understanding. A base in this area has been laid by the work of
Zitnick et al. [71]. They learn the semantic meaning of sentences in order to generate scenes
from a corpus of 80 different cliparts with 58 different objects. They model the problem
as a CRF with objects as nodes and relations as edges. The system still has some major
restrictions. They only consider scenes of children playing outside and attributes are only
modeled for humans. Nevertheless, the results are encouraging that future improvements
may overcome the current limitations. Though, deep neural network architectures may be
again the better choice to accomplish a system that automatically produces images from
a textual description without any constraints. The reason why we think so is illustrated
in an article by Mordvintsev et al. [51]. The article illustrates what deep neural networks
in object detection systems learn. An example from the article is depicted in figure 2.2.
It shows what happens, when an object detection system is operated in reverse mode. In-
stead of inputting an image, they input the keyword banana and observe how the network
transforms an image full of random noise. The outcome shows that the network processes
visual words similar as we do by having a conceptual notion of that object. Such outcomes
encourage to dream of future neural networks that may generate whole virtual realities
without human interference.

Being able to draw conclusions about the stated information discrepancy involves the
possession of meaningful automatic evaluation methods. It appears to be inherently com-
plicated to directly compare graphical with textual representation without incorporating
human judgment. Most measurements are bounded to specific applications and withdrawn
from similar tasks.

An often used method in automatically evaluating image captions is BLEU [53], which
originates from machine translation. BLEU compares a generated image caption with a
reference caption based on n-gram occurrences. Since there is a much broader variety
of sentences to characterize an image than when translating a sentence, this method has
proofed to be insufficient when evaluating image captions. There is a range of other methods
being used in image description evaluation (some of them are summarized in [10]), with just
a few of them specifically designed for the task of image description generation (e.g. CIDEr).
But it still remains an unsolved problem to find an evaluation method that highly correlates
with human judgment.

A more intuitive measurement can be applied in case of image-sentence retrieval tasks,
namely recall@k [21, 33], which counts how often the correct sample was among the top-k
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ranked results. Still, such a method cannot express the quality of the other top ranked
solutions3. Ma et al. [47] provides a comprehensive comparison to many recently proposed
state-of-the-art systems in the field of image-sentence retrieval. Their work outperforms
many of the comparative systems and has an interesting way to match both modalities.
A CNN (e.g. the object detector from [58]) is used to encode images into feature vectors.
Multiple CNNs are then used to match these image embeddings with semantic language
embeddings on several fragment levels (e.g. word, phrase or sentence level). The output
scores are subsequently combined by a fully-connected layer that computes a final ranking
score.

When it comes to the measurements mutual information and semantic correlation, that
we mentioned in chapter 1, there is a mixture of works that addresses similar ways of looking
at this problem. We will devote an extra section to this point, where we outline why we
consider them as insufficient for the specific task we face.

2.2. Evaluate Shared Information and Semantics of Multimodal
Documents

While we think, it is easier to quantify the relation of several modalities by two measures,
other works, that we are aware of, aim to wrap the relation into a single score.

Barnard and Yanai [2] are using ratings from information theory, such as entropy and
mutual information (cp. chapter 4), to measure the relation of words to images resp. image
regions. The ratings are estimated using a probability model. They demonstrated the
effectiveness of their model by pruning large vocabularies to those words, that are considered
as visual. They have taken on the same issue in [68]. Here, they directly want to estimate
the visualness of adjectives. For instance, the word yellow is considered as more visual
than the word religious, simply because the attribute yellow is easily inferable and by far
less ambitious compared to the attribute religious. Therefore, they measure the image
region entropy for a concept (adjective), which is computed as the entropy of features
extracted from an image region weighted by the probability that the concept belongs to that
region. These probabilities themselves are estimated by using the expectation-maximization
algorithm. The used images, that are tagged with a certain adjective, are gathered via
Google image search. Hence, their iterative algorithm itself is carefully designed to deal
with noisy images. However, aside from apparent visual words it is unlikely that a model
like this can reliably process concepts, which are considered as non or barely visual, as
the model does not incorporate a broader notion of comprehension. For instance, a proper
detection of the concept religious in images requires a generalization of image features as it
is infeasible to achieve due to reasonable datasets.

There have been some attempts to model semantic correlation. Zhuang et al. [70] tries to
model semantic correlation in a graph-based approach, where vertices represent documents
and edges represent their semantic correlation. However, these edge distances are computed
based on the distance of low-level feature vectors for documents from the same modality.
Documents appearing together in the dataset (such as an article with an enclosed image)
are modeled by a constant distance4. Even if such an approach leads to improvements in

3Except for the case, that the semantic hierarchy of the test data is known, such as in the case of ImageNet
[14].

4For the datasets used in this work, we can state, that co-occurrence does not imply a strong semantic
correlation. Though, a positive correlation usually exists.
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certain tasks, it is questionable if semantic correlation can be expressed by this model. In
addition, negative correlation is not modeled at all by this approach. Another approach
to model semantic correlation has been presented by Zhang et al. [69]. They map a term
count vector x on a set of latent topics, via x = Az (e. g. solvable with PCA). Their main
incentive is, that while x and z are document dependent, A is invariant for a given language.
So they define the semantic correlation of words by solely incorporating coefficients from A.
This word correlation can be used to imply the semantic correlation of documents. Even
though, some clues for the semantic correlation of documents are typically given by certain
keywords, something as ambiguous as natural language can not be comprehended without
knowledge of its syntactic structure or the context in which the document appears in5.
Yet, their simple BoW approach has been proven quite successful when using the learned
correlation to enhance a learning algorithm by background knowledge from unlabeled data.
Viji [62] tried to model correlation of documents by the dot product of their feature vectors
(this work used only term-based features). This approach has the same drawbacks as
the previous one, due to the lack of using more expressible features (in addition, the way
features are selected in this work, causes the correlation to be always positive). However,
the author mentions that a proper correlation estimation might not be possible without
language parsing. Xue et al. [66] try to estimate semantic correlation in an approach that
aligns the semantics of visual and textual blobs (local image regions and words), which
they call local-media objects (LMOs). To estimate the probability p(bj , di) of a LMO bj
co-occurring with a document di, they use probabilistic latent semantic analysis (PLSA).
The major pitfall of their approach (in the context of our work) is, that they assume that
the distribution of latent topics zk is the same for both modalities (zTk – textual topic, zIk
– visual topic), thus p(zTk , d

T
i ) = p(zIk , d

I
i ) for co-occurring image-text pairs. Once again,

this assumption typically does not hold, as we will further discuss in chapter 4. Instead,
the modalities co-occur to show distinct information and complement one another. They
propose a graph-based approach to align textual and visual blobs. The depicted results
are promising, but not comparable to our work, as the utilized dataset consists of images
tagged with highly correlated words, such that the above criticized assumption holds.

5Note, that x can actually be replaced by any feature vector, which better describes the content and
structure of a document than a simple bag of words.
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3. Fundamentals

In the following sections we intend to convey knowledge from the field of machine learning
that is necessary to thoughtfully grasp the ideas presented in the remaining chapters. After
we agreed on basic terms and sketched some general but elementary concepts of artificial
intelligence, we succinctly introduce the reader to the methods and algorithms of neural
computations and provide references for further reading.

3.1. Natural Language Processing

In clear contrast to all other living beings, humans use sophisticated language to communi-
cate, which enables us not just to efficiently exchange or express information, but moreover
allows us to reason about the world and its entities. This at least raises the question,
whether language is the key to what we intuitively conceive as intelligence. Even though
we cannot evidentially answer this question, we can yet clearly state that no program will
be considered as intelligent if it does not provide an intuitive and universal interface. An
obvious choice for such an interface would be a natural language interface.

This is where Natural Language Processing (NLP) comes into play. NLP is the field
of computer science that is concerned about the computer-aided processing of human (or
natural) language. This does not necessarily imply that NLP is a part of the discipline
of artificial intelligence. For instance, a simple template-based approach to extract cal-
endar events from emails would be as much an NLP task as a language-capable program
that would pass the Turing test. Anyhow, as human language is inherently complex, most
modern NLP tasks comprise the usage of methods that originate from machine learning al-
gorithms. Unlike formal languages, it is infeasible to list a complete grammar for something
as ambiguous and as quickly developing as, for instance, the English language. An addi-
tional aggravating factor is that each individual uses tiny perturbations when forming resp.
intonating words. Collectively, this emphasizes that it is practically impossible to design a
program that processes natural language with human-capabilities based on a case-by-case
analysis.

One major difficulty to overcome when applying machine learning techniques on natural
language problems is the finding of a proper feature extraction, meaning a vectorial repre-
sentation of a string. The challenge arises from the complex and unknown structure that
forms the syntax of a sentence or text and from a lack of modeling methods to define the
underlying semantics. Many solutions have been proposed and examined to resolve struc-
tural issues. One easy attempt is to assume that the underlying structure forms a sequence
and can be satisfied with Hidden Markov Models. But there are also modeling methods
that can cope with tree structures or unconstrained graphs such as Conditional Random
Fields. Yet another way to deal with structural concerns is to encode structural properties
into the feature vector. This might happen in the form of short phrases (such as n-grams),
whose possibilities are enumerated along the feature vector, or as triple encoded dependency
parse or constituency trees, which aim to appropriately reveal the syntactic structure of a
sentence.
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As there seems to be a significant relationship between syntax and semantics, that is
inevitable to disambiguate words, some features intend to represent both. One prominent
example is Semantic Role Labeling, that has the goal to identify the predicate and its
arguments in a clause. All these features have in common, that humans handcrafted them
and therewith decided what is necessary for a learning algorithm to grasp the meaning of
a sentence, whereas the original text got lost or became hidden among tons of additional
information. Another obstacle lays in the computation of these features. Most of them
require schooled knowledge plus experience for their extraction. Therefore, many of them
are using machine learning algorithms as well, which leads to features that are only as
reliable as the performance of the underlying extraction algorithm.

Although, the above described conventional NLP approaches have been incredibly suc-
cessful for many tasks (e.g. POS-tagging [61] or Chunking [57]), even reaching inter-annota-
tor-agreement rates [4], the performance of other tasks seems to be limited due to the stated
issues (e.g. Paragraph Detection [25]). We will present ways to overcome these limitations
in section 3.3.4.

3.2. Computer Vision

Computer Vision (CV) is a field of AI that is focusing on the development of algorithms
that can elicit semantic interpretations from images. Anyhow, to be as exact as in the
previous section, CV is not necessarily part of AI. But as it aims to mimic the human
visual system, many CV tasks are unavoidably dependent on machine learning methods.
Non-neural network approaches comprise the utilization of sophisticated feature extraction
to reduce the complexity of an input image and to overcome the data sparsity problem. One
prominent feature extraction method for CV is Scale Invariant Feature Transform (SIFT)
[46]. This method allows to extract local features, that are translation-, rotation- and
scale invariant and possess a high robustness against noise, illumination and background
cluttering. However, utilizing such methods leads to a discard of a bulk of information, that
may be insignificant for the most part, but is prohibiting the concentration of details that
may shape a relevant context, which arises from an interplay with background knowledge
not inferable from the image. This consideration leads us to the conclusion, that systems
with human capabilities must have at least the same informational input as humans have.

Prominent applications of CV are object detection and image matching/retrieval, to name
just a few. Many interesting novel and future applications of CV originate from collabo-
rations with other fields, such as robotics or NLP. Other promising future perspectives of
CV are including combined applications with augmented reality. Capturing such a broad
scope does require solid performance on basic CV tasks. In the following, we will learn the
necessary skills to tackle such challenges.

3.3. Learning in Deep Neural Network Architectures

Primarily, we talked about limitations of NLP and CV so far. Therewith, we have been
keeping quiet about the enormous progress that has been taking place in recent years. A
major role in this progress has been held by deep learning methods. Therefore, the rest of
this chapter will be devoted to deep learning, its fundamentals and application.

We start with the very basics of machine learning and give an overview on how an
algorithm might look like, that can automatically learn patterns in its input data in order
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Figure 3.1.: Overfitting occurs when the learned model adapts too much to the training
data set and does not generalize well. In the given example, positive training
samples are blue and negative training samples are red. Test samples are trans-
parent. The continuous boundary shows the learned model, whereas the dashed
boundary marks a preferred decision boundary, that would better generalize on
unseen data and not adapt too much to the training samples.

to correctly predict an output.
What holds true for all learning algorithms is, that they conduct learning on an appro-

priate data source. This dataset is typically divided into three parts: training, validation
and test set. Each sample from the training set is processed by the learning algorithm
to extract patterns from its feature representation1 in order to optimize a predefined goal
depending on its input and output. Sometimes, a smaller validation set is held back to
fine-tune hyperparameters before starting the training process. One major learning goal
is to generalize the training data. If the learned model adapts too much to the training
data, it is at risk to perform poorly on unseen data. This problem is called overfitting
and it is sketched in figure 3.1. To prevent overfitting, various regularization methods can
be applied, which basically shall perturb the optimization goal to avoid a too restrictive
prediction model. To assess the performance of the learned model the test set, that consists
solely on samples not available in the training set, is used. This allows to evaluate whether
the model can generalize on previously unseen samples. If the training data is processed
as a single batch, the learning process is called batch learning. On the other hand, if the
training does not terminate but waits continuously for new samples to update its internal
weights, then the learning process is called online learning.

Another important distinction is to be made between supervised and unsupervised learn-
ing algorithms. Supervised learning requires the availability of an annotated dataset, mean-
ing that each sample is labeled with the desired outcome. For instance, such a labeling might
be the objects appearing in a sample image. Unsupervised learning schemes do not require
labeled input data. In this case, patterns have to be inferred from the distribution of the
input data or labels have to be automatically derived from the input as it is the case for an
autoencoder, that predicts its own input. Sometimes, another distinction for a third case,
named weak supervision, is made. In that instance, labels are generated based on heuristics

1Even if the raw data is directly encoded as input for the learning algorithm, without further preprocessing,
we call this encoding feature vector.
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[27].
Basically, there are two different types of learning algorithms when considering the shape

of their outcome. Classification algorithms have a discrete set of possible outcomes, whereas
regression algorithms predict an outcome from a continuous range.

Learning means, that we estimate parameters of a mathematical function. These param-
eters are typically called weights. If the weights shall fit a linear function, the algorithm is
a linear learning algorithm, otherwise it is called nonlinear. Example 3.3.1 should convey
the intuition how a simplistic learning algorithm might look like. The example will also
introduce some of the fundamental notation used in this thesis.

Example 3.3.1. This example considers a binary classification problem. The outcome
is predicted using a supervised linear learning scheme. The dataset consists of annotated
samples

D = {(xraw1 , y1), (x
raw
2 , y2), . . . } , (3.1)

where xrawi is the raw input to the algorithm (e.g. an image) and yi ∈ {>,⊥} is the label
(e.g. whether the image depicts an outdoor scene (>) or not (⊥)). The algorithm expects
a numeric vector as input, the features representing the sample. The feature extraction
method ϕ maps a sample onto its feature representation.

xi := ϕ(xrawi ) , xi ∈ Rn (3.2)

For the sake of simplicity, it is assumed that the samples are linearly separable in their
feature space. Consequently, we can learn a hyperplane that separates the samples and
therewith classify them according to the half space in which they lay. Such a hyperplane is
fully defined by its normal vector w plus its distance from the origin b. To decide on which
side of the plane a sample is located, the following equation can be utilized

di = 〈w,xi〉+ b , (3.3)

whereas di is proportional to the signed distance from the hyperplane. The output can
then be interpreted as follows

if 〈w,xi〉+ b > 0 then y∗ = > ,

else y∗ = ⊥ .
(3.4)

The remaining question is, how the parameters w, b can be estimated, such that the defined
hyperplane correctly separates the data. Therefore a training algorithm has to be constructed,
that will learn appropriate weights. We denote T as training set and E as test set, such that
T ∩ E = ∅ and T ∪ E = D. Now, the training set can be used to sweep over all its samples
and adjust the weighs until they fit T. This is done by an error-driven update rule, which
corrects the weights in case of a misclassification.

The learning scheme is sketched in algorithm 1. The ˆ-operator, used in line 4 and line
5 to avoid the distinction of several cases, is defined as follows:

ŷ =

{
+1, if y = >
−1, otherwise

(3.5)

If the condition in line 4 holds, then the dot product projects the sample onto the plane
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1

(
w
b

)
=

(
0
0

)
; // Initialization of weights

/* Sweep NUM ITERATION times over the training set */

2 for epoch=0 to NUM ITERATION do
3 foreach (x, y) in T do

/* If sample is misclassified */

4 if ŷ〈
(

w
b

)
,

(
x
1

)
〉 < 0 then

5

(
w
b

)
=

(
w
b

)
+ ŷ

(
x
1

)
; // Update rule

6 end

7 end

8 end
Algorithm 1: An example of a simplistic learning algorithm

normal in the wrong half-space. The term ŷ
(
x 1

)T
corrects this misclassification by a

certain amount.
The algorithm presented in this example is called Perceptron and is one of the first ma-

chine learning algorithms that have been invented. It was published by Rosenblatt [56] over
a half century ago. Perceptron is proven to eventually find a correct hyperplane, if the data
is linearly separable.

The classifier presented in example 3.3.1 obviously has some pitfalls as well as in respect
of dedication and efficiency of the training process and in terms of expressiveness. Further
enhancements of the presented approach can resolve most of Perceptrons drawbacks. But
also subtle algorithms, such as SVMs, have the disadvantage that they can only learn to
linearly separate the data2. Therefore, non-linear approaches, especially neural networks,
seem to be more promising for a great variety of tasks. Of particular interest in this
context are deep neural networks. Deep neural networks consist of several neural layers (see
subsection 3.3.1) and are therefore capable of learning hidden alignments or representations
that are otherwise infeasible to envisage by ML engineers. LeCun et al. [44] are describing
deep learning methods similarly as: “computational models that are composed of multiple
processing layers to learn representations of data with multiple levels of abstraction”. A
major advantage of these models is, that their architecture perfectly suit the task of feature
learning, which makes handcrafted features dispensable. This is favorably as humans can
merely guess what features reveal a desired interpretation or meaning and what features
are particularly beneficial to a certain learning algorithm or architecture. Their recent
success, enabled by the increase of computational power, makes them inevitable in the field
of machine learning and gives hope for a brighter future due to further boosts in available
computing capacity.

3.3.1. Fully-Connected Feed-forward Neural Networks

Artificial Neural Networks are a class of machine learning algorithms that are trying to
mimic the behavior and the architecture of biological neural networks. A neuron is a special

2Though, the learned separation might be correct when predicting the training data, as the hyperplane can
be learned in a higher dimensional space where the training data becomes linearly separable [6].

13



(a) Model of a biological neuron

(b) The Perceptron algorithm can be inter-
preted as a computational neuron

Figure 3.2.: A biological (a) and artificial (b) neuron

cell used in brains to transfer signals if certain preconditions are satisfied. In the human
brain billions of neurons are interconnected via synapses to form the neural network.

A simplified model of a biological neuron is depicted in figure 3.2a. Dendrites (input) are
connected with the axons (output) of other neurons. The accumulated excitement of the
dendrites decides whether the axon of a neuron fires or not. There are certain analogies
when considering the behavior of a single biological neuron compared to the Perceptron
algorithm presented in example 3.3.1. Each element xi of the feature vector can be seen as
a stimulus and each weight wi is a synapse that modifies xi. Those individual excitements
wixi are accumulate and mapped through a step function, that decides whether the neuron
fires (>) or not (⊥). Due to this analogy, Perceptron is a simple mathematical model of a
biological neuron.

The most basic neural network architecture is a fully-connected feed-forward network
with three layers: an input layer, a hidden layer and an output layer; as depicted in figure
3.3. The network is called fully-connected because each neuron accumulates as input the
modified outputs of all neurons from the previous layer and its output is forward to all
neurons in the next layer. A feed-forward network is not able to process or reflect its own
output in contrast to recurrent neural networks (see subsection 3.3.3).

Each neuron performs a linear combination of its input and maps it through a non-
linear function (e.g. equation 3.4). As we will see later, the learning process involves the
computation of the gradients. Therefore, approximations of a step-function are typical
used as non-linear activation functions. Exemplary activation functions are the sigmoid
or hyperbolic tangent function. In this work, we chose the recently most popular, partial
differentiable rectifier function as activation function for neurons in hidden layers:

f(x) = max(0, x) . (3.6)

To explain the mathematical background of neural networks, we are going to shortly
introduce some notations. We assume a training set T with N annotated samples (x,y).
The considered network contains L layers with ml−1 neurons in layer l. The aggregated
output of all neurons of layer l is denoted by zl, which is computed by

zl = σl(Wlzl−1 + bl) , (3.7)

where σl is a function that applies the activation function σl element-wise on its input
vector. Furthermore, it is defined that
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z0 = x

zL = y∗ .
(3.8)

Wl and bl are the parameters that have to be learned for each layer l. Each row in
Wl ∈ Rml×ml−1 models the synaptic weights of one neuron in the layer, whereas bl ∈ Rml

models the biases to enable the capability of handling unnormalized inputs.
Now, as the feed-forward step is fully defined, we can consider the network as computing

a non-linear function (ensured by proper activation functions)

y∗ = F(x) . (3.9)

Equation 3.9 does not hold for the training phase, where the parameters are not fixed
yet. During training, the function computed by the neural network can be expressed by

y∗ = F(x,W1,b1, . . . ,WL,bL) . (3.10)

For the sake of readability, we will omit the extra parameters of equation 3.10, if the
context is clear3.

To evaluate the computed output y∗, a loss unit is stacked on top of the network, that
compares the predicted output with the desired output y. Popular choices for loss functions
are the squared loss and the cross-entropy loss function. In the following, we will use
superscripts to access elements of a vector or matrix. The mean squared error can be
calculated as follows

LMSE(y,y∗) =
1

2|y|

|y|∑
i=1

(yi − y∗i)2 . (3.11)

To compute the cross-entropy loss, the outputs of the network have to be considered as
probabilities, whereas y is an one-hot vector. For the case of multiple outputs, this can be
reached by applying the softmax function to the network output:

ŷ∗ = fsoftmax(y∗) =

 ey
∗1∑

i e
y∗i

...

 . (3.12)

For a binary classification problem (y ∈ {0, 1}) a bounded activation function can be used
to map a single output onto the range [0, 1] or two outputs can be used and normalized
with the aid of equation 3.12. The binary cross-entropy loss function is defined as:

LbCE(ŷ, ŷ∗) = −ŷ log(ŷ∗)− (1− ŷ) log(1− ŷ∗) . (3.13)

For several outputs, the cross-entropy loss can be computed as

LCE(ŷ, ŷ∗) = −
|ŷ|∑
i=1

ŷi log(ŷ∗i) . (3.14)

[22] shows that the cross-entropy loss usually finds better local optima, whereas squared-

3Note, that zl does actually depend on parameters as well: zl(x,W1,b1, . . . ,Wl,bl).
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error depends strongly on the weight initialization. Both functions are only example loss
functions. One might use any loss function that states the optimization problem being faced
during learning. We will denote the chosen differentiable loss function to evaluate a single
sample as Ls(y,y

∗). Now, we present the back-propagation algorithm. For a more detailed
explanation, please review [43]. The idea of this learning algorithm in neural networks is to
back-propagate the error, computed by the loss function, through the network to update its
weights. Therefore, the gradient of the loss with respect to a learnable weight is computed
as it states the weights influence to the loss. The gradients can be computed by using the
chain rule. If the gradient is computed for a subset of the training set Tb ⊆ T, then the
overall loss function is defined as:

L(Tb) =
1

|Tb|
∑

(xs,ys)∈Tb

Ls(ys,F(xs)) (3.15)

This setup allows us to compute the gradient of the total loss L(Tb) with respect to a

weight wjkl resp. bjl , assuming the gradient of Ls with respect to zL is known as well as the
gradient of σl(v) with respect to v is known.

∂L(Tb)
∂wjkl

=
1

|Tb|
∑

(xs,ys)∈Tb

∂

∂wjkl
Ls(ys, zL)

∂Ls(ys, zL)

∂wjkl
=
∂Ls(ys, zL)

∂zL

∂zL

∂wjkl
∂zL

∂wjkl
=

∂

∂wjkl
σL(WLzL−1 + bL) = σ′L(WLzL−1 + bL)WL

∂

∂wjkl
zL−1

...

∂zl+1

∂wjkl
=

∂

∂wjkl
σl+1(Wl+1zl + bl+1) = σ′l+1(Wl+1zl + bl+1)Wl+1

∂

∂wjkl
zl

∂zl

∂wjkl
=

∂

∂wjkl
σl(Wlzl−1 + bl) = σ′l(Wlzl−1 + bl)

∂Wl

∂wjkl
zl−1

= σ′l(Wlzl−1 + bl)
[
0 · · · zkl−1 · · · 0

]T

(3.16)

Note, that σ′l(v) = ∂σl(v)
∂v ∈ Rml×ml is a diagonal matrix as σl operates the activation

function element-wise on v. The calculations to compute the gradient of L(Tb) with respect
to bjl are similar to those depicted in equation 3.16. It is worth noticing, that the calcula-

tions to compute the gradient in equation 3.16 with respect to another weight wj
∗k∗

l with
j∗ 6= j and k∗ 6= k, are identical except for the last line. This should be exploited when
implementing the algorithm. Example 3.3.2 presents the gradient computation on a sample
network.

Example 3.3.2. This example shows the gradient computation as highlighted in equation
3.16 for the fully-connected feed-forward network depicted in figure 3.3. The sigmoid func-
tion is used for σl in all layers:

σl(v) =
1

1 + e−v
σ′l(v) = σl(v)(1− σl(v)) . (3.17)
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Figure 3.3.: A fully-connected feed-forward neural network with three layers. Circles are
representing neurons and edges are illustrating the data flow.

This choice results in

σ′l(v) = diag
(
σ′l(v

1), σ′l(v
2), . . .

)
= diag

(
σl(v

1)(1− σl(v1)), σl(v2)(1− σl(v2)), . . .
)

.
(3.18)

To evaluate the output of the network during training, the mean squared loss function
from equation 3.11 is used

Ls(y,y
∗) =

1

2|y|

|y|∑
i=1

(yi − y∗i)2 ∂Ls(y,y
∗)

∂y∗
= − 1

|y|
(y − y∗)T . (3.19)

As the complete network architecture is known, the gradient, averaged over a set of train-
ing samples Tb, with respect to a learnable weight can be computed. As an example, w. l. o. g.
we compute the gradient with respect to w00

2 :

∂L(Tb)
∂w00

2

=
1

|Tb|
∑

(xs,ys)∈Tb

∂

∂w00
2

Ls(ys, z3)

=
1

|Tb|
∑

(xs,ys)∈Tb

1

2
(ys − z3)

T ∂

∂w00
2

z3

=
1

|Tb|
∑

(xs,ys)∈Tb

1

2
(ys − z3)

Tσ′3(W3z2 + b3)W3
∂

∂w00
2

z2

=
1

|Tb|
∑

(xs,ys)∈Tb

1

2
(ys − z3)

Tσ′3(W3z2 + b3)W3σ
′
2(W2z1 + b2)

∂W2

∂w00
2

z1

(3.20)
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Hence, the overall gradient is:

∂L(Tb)
∂w00

2

=
1

|Tb|
∑

(xs,ys)∈Tb

1

2
(ys − z3)

T︸ ︷︷ ︸
R1×2

σ′3(W3z2 + b3)︸ ︷︷ ︸
R2×2

W3︸︷︷︸
R2×2

×σ′2(W2z1 + b2)︸ ︷︷ ︸
R2×2

[
1 0
0 0

]
z1︸ ︷︷ ︸[

z01 0
]T

(3.21)

The computed gradient can now be used to update the weight w00
2 , meaning subtracting

∂L(Tb)
∂w00

2
from w00

2 , as the goal is to minimize the loss.

The approach that is virtually universally used to embed back-propagation into a learning
scheme is gradient descent. The idea is to move the learnable parameters in the direction
opposite to the gradient to minimize the computed loss. As the true gradient depends on the
unknown distribution of the sample space, commonly two approximations are distinguished
to describe algorithms that utilize the estimated gradients.

The first algorithm is simply called Gradient Descent (GD). The algorithm computes the
gradient as outlined in equation 3.16, where Tb = T. Thus, the gradient of the loss computed
on the sample distribution is estimated by averaging the gradients of each sample in the
training set.

1 Wl,bl = initializeWeights(Wl,bl) ∀l ∈ [0, L] ; // Initialization of weights

/* Sweep NUM ITERATION times over the training set */

2 for epoch=0 to NUM ITERATION do
3 ∇LWl

= 0, ∇Lbl
= 0 ∀l ∈ [0, L] ;

4 foreach (x,y) in T do
5 y∗ = F(x,W1,b1, . . . ,WL,bL) ; // Feed x forward

/* Compute gradients */

6 ∇LWl
= ∇LWl

+
[∂Ls(x,y)

∂wjk
l

∀j ∈ [0,ml] ∀k ∈ [0,ml−1]
]

∀l ∈ [0, L] ;

7 ∇Lbl
= ∇Lbl

+
[∂Ls(x,y)

∂bjl
∀j ∈ [0,ml]

]
∀l ∈ [0, L] ;

8 end
/* Use average gradients to update weights */

9 Wl = Wl − λ
|T|∇LWl

∀l ∈ [0, L] ;

10 bl = bl − λ
|T|∇Lbl

∀l ∈ [0, L] ;

11 end
Algorithm 2: The Gradient Descent learning scheme

The parameter λ from algorithm 2 is the learning rate, a hyperparameter that trades off
weight adaptiveness and error robustness due to errors emerging from the gradient approx-
imation. The learning rate may be a constant or a sophisticated function that depends on
the current epoch or on the epoch and the considered weight (see [8, 43]).

Another way to estimate the gradient of the loss computed on the sample distribution
is to use the Stochastic Gradient Descent (SGD) algorithm. SGD considers a single (ran-
domly selected) sample per epoch and uses its gradient to update the weights. There are
two advantages compared to GD. SGD is much faster, as it does not iterate over the whole
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training set each epoch, and it implements some sort of self-regularization, as the poor
gradient estimation asserts that noise is introduced to avoid that the model overfits. Ad-
ditionally, this does enhance SGD its ability to jump away from local minima compared to
GD.

1 Wl,bl = initializeWeights(Wl,bl) ∀l ∈ [0, L] ; // Initialization of weights

/* Update weights NUM ITERATION times */

2 for epoch=0 to NUM ITERATION do
3 x,y = getRandomSample(T) ; // Pick a random sample from the training set

4 y∗ = F(x,W1,b1, . . . ,WL,bL) ; // Feed x forward

/* Compute gradients */

5 ∇LWl
=
[∂Ls(x,y)

∂wjk
l

∀j ∈ [0,ml] ∀k ∈ [0,ml−1]
]

∀l ∈ [0, L] ;

6 ∇Lbl
=
[∂Ls(x,y)

∂bjl
∀j ∈ [0,ml]

]
∀l ∈ [0, L] ;

/* Use gradients to update weights */

7 Wl = Wl − λ∇LWl
∀l ∈ [0, L] ;

8 bl = bl − λ∇Lbl
∀l ∈ [0, L] ;

9 end
Algorithm 3: The Stochastic Gradient Descent learning scheme

A trade-off between SGD and GD is to use mini-batches. Thus, instead of iterating over
the whole training set every epoch in algorithm 2, GD with mini-batches would iterate over
a small subset Tb ⊂ T of the training set.

There are many tricks that can be applied to increase the chance of convergence and
to speed up the training process. Primary advices typically incorporate a proper weight
initialization and input normalization as well as input transformations/perturbations to
artificially enlarge the training set. For more information, please refer to the works of
Bottou [8] and LeCun et al. [43].

It is worth mentioning that there exists a variety of second-order methods that incorporate
the use of the Hessian of the loss function to accelerate the learning process. However, as
mentioned in [43], they are mostly impractical or infeasible on large networks and are
therefore by far not as common as first order methods.

Before we move our attention to special neural net architectures, we want to highlight
one more property or emergent effect of the just presented machine learning technique.
Bottou [7] has demonstrated in his work, that neural networks are capable of learning
general attributes of the world, such that they can be easily transferred to other tasks. He
emphasizes, that this is similar to human reasoning. In general, our neurons are not trained
to be used for single task (e.g. handwriting recognition). Moreover, the network body is
reused for a variety of tasks. Transfer learning can be easily applied to artificial neural
networks, as it only requires the output layer to be exchanged.

3.3.2. Convolutional Neural Networks

Fully-connected neural networks have a serious drawback. For each layer, the algorithm
has to learn ml ·ml−1 +ml parameters. Imagine a single layer, that should perform object
recognition for 200 different objects on low resolution images with 200 × 200 pixels. This
setup would require to learn around 8 million parameters. It is doubtful that such a complex
model can be learned by a moderate-sized training set.
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(a) Original image (b) Filtered image

Figure 3.4.: A usage example of convolutions in image processing. The kernel from equation
3.23 extracts the vertical edges from the original image.

An effective alternative are Convolutional Neural Networks (CNN). They have been
proven to be incredibly successful compared to fully-connected networks for tasks where
the input has high local correlations, e.g. objects in an image. Their architectural design is
inspired by the neuronal image processing in the visual cortex of animals [32].

A convolution is a mathematical operation that modifies each element of a matrix by
incorporating its local area based on weights defined by a kernel. If C and K are matrices,
whereas K ∈ Rk×k where k is an odd number (k∗ := bk2c), a convolution can be expressed
as

(C ∗K)i,j =
k∗∑

a=−k∗

k∗∑
b=−k∗

ci−a,j−b · ka+k∗,b+k∗ . (3.22)

Convolutions are widely used in image processing for local feature extraction. For in-
stance, convolutions are useful to detect edges as depicted in figure 3.4. The kernel that
was used to filter the image is

K =

−1 0 1
−1 0 1
−1 0 1

 . (3.23)

This filter can only detect vertical edges. The intuition behind this specific filter is, that a
vertical edge results in a gradient between the left and right pixel at a certain pixel position.
A homogeneous area with the same pixel values in the local neighborhood will result in an
annihilation of horizontal pairs when applying this filter.

Convolutional Neural Nets utilize this powerful method of feature extraction. But instead
of taking hand-engineered kernels, they learn the filters that are most relevant for the task
by themselves. A deep CNN architecture typically involves a series of layer modules. For
instance, a convolutional layer followed by a non-linear activation followed by a down-
sampling step based on heuristics (called pooling-layer). The generated representation (e.g.
a list local object detections) can be passed to a fully-connected layer, that infers the global
semantics of the input. Such a sample architecture is depicted in figure 3.5.

Convolutional layers are feed-forward layers just as fully-connected layers. They may
compose of several feature maps. Each feature map learns a different kernel, that is applied
to the input. There are two major differences compared to fully-connected layers. Firstly,
a neuron in a convolutional layer only connects to some local outputs of the previous layer,
the so called local receptive field. Secondly, all neurons of a feature map share the same
weights (the kernel learned for this feature map).
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Figure 3.5.: The typical architecture of a deep convolutional neural network.

We denote the weights of a convolutional layer l with fWl ∈ Rkf×kf where f refers to
the index of the considered feature map. Thus fWl is the kernel of the f -th feature map
in layer l. When assuming that the output of the previous layer is a matrix zl (or reshaped
to a matrix), then the computation performed by each neuron is

fzijl = σl(
fvijl ) with fvijl =

k∗f∑
a=−k∗f

k∗f∑
b=−k∗f

zi−a,j−bl−1 · fw
a+k∗f ,b+k

∗
f

l + fbl . (3.24)

If there are several input channels (e.g. the RGB channels of an input image or the feature
maps of a previous convolutional layer), then the correct fvijl is computed by summing over
all channels. To improve readability, we assume that there is only one input channel and
only one feature map, such that the pre-superscript f can be ignored.

Due to the feature extraction on local receptive fields, CNNs are robust against transla-
tions. To some extend, they are even robust against distortions and scaling [42]. However,
to grasp the features detected by a convolutional layer, they are typically combined with a
subsequent pooling layer, that shall heuristically compress the output. The most prominent
among those layers is the max-pooling layer, which considers a local receptive field and only
forwards the maximum value occurring in this field. This architecture allows to detect low-
level features in early layers (such as edges) and high-level features in deeper layers (such
as objects).

Learning in convolutional layers is similar to fully-connected layers. To apply back-
propagation, the gradients ∂L/∂zl−1 has to be calculated.

∂L

∂zl−1
=
∂L

∂vl

∂vl

∂zl−1
(3.25)

We assume, that ∂L/∂vl is known (see subsection 3.3.1 for computation details). Note, if
layer l + 1 assumes a vector as input and not a matrix, vl can be reshaped to a vector or
preferably, all matrices are vectorized for internal computations. The derivative of equation
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3.24 with respect to a single input activation is

∂vijl

∂zi
′j′

l−1
=

∂

∂zi
′j′

l−1

( k∗∑
a=−k∗

k∗∑
b=−k∗

zi−a,j−bl−1 · wa+k
∗,b+k∗

l + bl

)
=

{
wi−i

′+k∗,j−j′+k∗
l , if − k∗ ≤ i− i′ ≤ k∗ and − k∗ ≤ j − j′ ≤ k∗

0, otherwise.

(3.26)

Equation 3.26 utilizes, that we only consider the wa+k
∗,b+k∗

l , that satisfies the conditions
i′ = i − a and j′ = j − a. We will denote the case-distinction from equation 3.26 by the

ˆ-operator, thus ŵi−i
′+k∗,j−j′+k∗

l is zero if one of the conditions does not hold. Hence, we
can state that

∂vl

∂zijl−1
=


ŵ0−i+k∗,0−j+k∗
l ŵ0−i+k∗,1−j+k∗

l · · ·

ŵ1−i+k∗,0−j+k∗
l

. . .
...

 . (3.27)

To avoid working with tensors, we vectorize ∂L/∂vl and the matrix from equation 3.27.
Now, the targeted derivative can be computed as dot product of both vectors. But by taking
into consideration that only k elements of the above matrix are non-zero per column, we can
simplify the derivative of the loss with respect to an input activation of the convolutional
layer l as

∂L

∂vl

∂vl

∂zijl−1
=

k∗∑
a=−k∗

k∗∑
b=−k∗

( ∂L
∂vl

)i+a,j+b
wa+k

∗,b+k∗

l

=

k∗∑
a=−k∗

k∗∑
b=−k∗

( ∂L
∂vl

)i−a,j−b
w−a+k

∗,−b+k∗
l

=
( ∂L
∂vl

)ij
∗ rot180(Wl) ,

(3.28)

where the operation rot180 rotates the kernel Wl by 180 degrees.
Similarly, the update rule can be derived

∂vijl
∂wabl

= zi−a,j−bl−1 (3.29)

The resulting matrix ∂vl/∂wab
l can be vectorized and utilized to compute ∂L/∂wab

l . A more
detailed description of the back-propagation process in convolutional neural networks can
be found in [9].

3.3.3. Recurrent Neural Networks

The fact that complex input, that humans can perceive, typically decomposes into smaller
parts that can be individually categorized, makes CNNs to a powerful machine learning
tool, that can solve complex tasks with reasonable-sized datasets and with the limited
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(a) A recurrent neural layer (b) Recurrent layer unfolded over time

Figure 3.6.: A recurrent layer does backproject its state to allow that past inputs modify
the next output.

computational power currently available. But they are not designed to manage temporal
or variable-sized input. Additionally, they cannot reflect on what they have processed just
like all feed-forward neural networks. To overcome this shortcoming, Recurrent Neural
Networks (RNN) have been designed. They are inspired by the recurrent structure of
biological neural networks. Humans can perceive four dimensions. This makes it unlikely
that neural networks can mimic human intelligence if they only have spatial and no temporal
awareness.

A recurrent neuron possesses a state that encodes the history of input activation. Every
time step, the recurrent neuron morphs its own state based on the new input and generates
an output activation from the newly generated state. We denote the internal state of layer
l at time step t by sl(t) ∈ Rnl . The state modification of a simple recurrent neural network
can now be described as

sl(t) = σ
(
Wl,i→szl−1(t) + Wl,s→ssl(t− 1) + bl,s︸ ︷︷ ︸

vl(t)

)
= σl,s

(
Wl,s

(
zl−1(t)

sl(t− 1)

)
+ bl,s

)
.

(3.30)
The output may then be computed as

zl(t) = σl,o
(
Wl,osl(t) + bl,o

)
(3.31)

The model expressed by above equations is depicted in figure 3.6a. It shows that the last
state is fed back as input into the recurrent layer to incorporate the layer its history (the
previous time steps) in the output computation. A common approach to train recurrent
neural networks is to back-propagate the error through time [65]. Therefore, the recurrent
layers are unfolded over time (see figure 3.6b), such that they can be considered as usual
feed-forward networks. The gradients with respect to the weights are computed for each
time step and accumulated before the update occurs.

∂L

∂wijl
=

T∑
t=0

∂L(z)

∂wijl
(3.32)

One major difference to earlier gradient computations is the recurrence in equation 3.30.
The derivative of equation 3.30 with respect to an element of Wl,s→s requires to consider
the derivative of sl(t− 1) too.
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∂L(t)

∂wijl,s→s
=
∂L(t)

∂vl(t)

∂vl(t)

∂wijl,s→s
=
∂L(t)

∂vl(t)

(∂Wl,s→s

∂wijl,s→s
sl(t− 1) +

t−1∑
t′=0

∂sl(t− 1)

∂sl(t′)

∂sl(t
′)

∂wijl,s→s

)
(3.33)

We can rewrite the last term in equation 3.33 for t′ = 0 as

∂sl(t− 1)

∂sl(0)

∂sl(0)

∂wijl,s→s
=
∂sl(t− 1)

∂sl(t− 2)

∂sl(t− 2)

∂sl(t− 3)
· · · ∂sl(1)

∂sl(0)

∂sl(0)

∂wijl,s→s
. (3.34)

Equation 3.34 reveals one of the major drawbacks of the simple RNN formalism described
above. For large values of t the computed gradient might explode or vanish, as the product
promotes an exponential amplification. It has been shown, that the exploding gradient
problem can be managed by clipping large gradients [54]. The vanishing gradient problem
has not been solved for this RNN architecture. In contrast to exploding gradients, vanish-
ing gradients do not stop the network from learning temporal relations, since the gradient
is unlikely to vanish if we only look at the recent history. On the other hand, long-term
dependencies cannot be grasp if the gradient vanishes. However, the major incentive for
the development of RNNs is the processing of variable-sized sequences, as local temporal
behavior can be simulated by feed-forward neural networks as well (e.g. by considering n-
grams). One architectural enhancement that sufficiently overcomes the vanishing gradient
problem was initially proposed by Hochreiter and Schmidhuber [26]. The recurrent model
they invented is called Long-Short-Term Memory (LSTM) and allows to hold past informa-
tion over a long timespan by incorporating the model of a memory cell. This memory cell is
accessed by gates. The input gate il controls what information, that can be perceived from
the outside world, should be considered to accomplish the task assigned to this cell cl. The
output gate ol decides what part of the maintained knowledge should be shown to the next
layer, as the whole internal state might flood the outer world with information and leads
to distraction. Finally, the forget gate fl allows the cell to forget unnecessary information
and keep only the essential part. The vector gl is a helper to describe the actual input to
the layer. An LSTM cell as described by the following equations is shown in figure 3.7 (the
equations are based on the LSTM defined in [36]).

il = σl,i
(
Wl,i

(
zl−1(t)

zl(t− 1)

)
+ bl,i

)
(3.35)

ol = σl,o
(
Wl,o

(
zl−1(t)

zl(t− 1)

)
+ bl,o

)
(3.36)

fl = σl,f
(
Wl,f

(
zl−1(t)

zl(t− 1)

)
+ bl,f

)
(3.37)

gl = σl,g
(
Wl,g

(
zl−1(t)

zl(t− 1)

)
+ bl,g

)
(3.38)

cl(t) = fl � cl(t− 1) + il � gl (3.39)

zl(t) = ol � tanh(cl(t)) (3.40)

This RNN architecture can better deal with vanishing gradients because of the addition
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Figure 3.7.: The model of an LSTM cell as described by equations 3.35 to 3.40.

in the recurrence equation 3.39. If back-propagation through time is applied on the cell,
the recurrence equation leads to

∂cl(t)

∂cl(t− 1)
= fl . (3.41)

The original recurrence equation from Hochreiter and Schmidhuber [26] had no forget
gate, so ∂cl(t)/∂cl(t−1) would have been 1. The forget gate was later introduced as it had been
proven to induce more successful LSTM networks. But the general idea of a constant error
flow makes LSTMs capable of learning long-term dependencies. Karpathy et al. [36] showed
on character sequences that LSTMs can learn over long distances (> 200). Additionally,
they observed that for the considered task some of the neurons learned an interpretable
representation (e.g. whether the current input is inside a quote). This is remarkably, as it
proofs the general ability of RNNs to infer properties of the global structure by considering
one entity at a time.

3.3.4. Deep Learning in NLP

Of particular interest for this section is the paper from Collobert et al. [11], because it
highlights the benefits of deep neural networks. In section 3.1 we mentioned, that one
problem of conventional NLP feature extraction is, that these features themselves are not
easy to formalize and are therefore learned by ML tools. More sophisticated tasks are
therefore forced to be trained with noisy feature vectors. Collobert et al. [11] have shown
that one can reach state-of-the art results in a variety of basic NLP tasks (e.g. POS-tagging,
NER, SRL) by using deep neural networks that automatically learn the features required
to solve the task. They implemented a tool SENNA, that is in terms of runtime as well as
in terms of memory-usage superior compared to conventional tools.

That CNNs can not only successfully be used to accomplish tasks in CV is proven by
the work of [37]. They also have been advantageous for paraphrase detection [25, 31].
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Paraphrase detection aims to identify pairs of sentences that have the same meaning. This
is particularly useful, as human language provides many different ways to express the same
thought, whereas a tiny modification in a sentence can change its overall meaning. Another
problem is, that semantic alignments are not knowingly expressible as features, since they
are encoded in a hidden structure. It is just another prominent example, where deep neural
networks can overcome the problems arising from a lack of proper handcrafted features.

The most promising architecture (if not a combined one) for NLP tasks are RNNs, as
language is perceived as a variable-sized sequence. Graves et al. [24] show that state-of-
the art results in speech recognition can be achieved with deep RNNs. In contrast to the
RNNs presented in subsection 3.3.3, they use bidirectional RNNs. These RNNs can utilize
knowledge from past and future input, so they have the additional ability to modify their
output based on what comes next.

Lai et al. [41] combine a recurrent structure in a CNN to classify texts. Their architecture
is especially designed to capture the contextual usage of words. This is interesting as it
allows to translate raw tokens into a representation that encodes the meaning of those
words. In general, this approach is called word embeddings. They tackle another problem
mentioned in section 3.1: How to input raw text into a learning algorithm?

Word Embeddings

Word embeddings are representations of words as numerical vectors. A simple illustration
is to imagine a lookup table that translates each token in a vocabulary w ∈ V into a
d-dimensional vector w ∈ Rd. We specifically want to present an approach by Mikolov
et al. [49], that is utilized by the implementation used in our system. The word vectors
should be created such that similar words (words appearing in similar contexts) have vector
representations that are close to each other. To reach this goal, they trained a neural
network that shall predict words in the context of a given word (so called skip-gram model).
More precisely, their optimization goal is

1

N

N∑
n=1

∑
−c≤j≤c
j 6=0

log p(wn+j |wn) , (3.42)

where w1, w2, . . . , wN is a token sequence and c is the size of the context window. The
probability of a context word given the current word can be estimated as4

p(wc|wn) =
e〈wc,wn〉∑
v∈V e

〈v,wn〉
. (3.43)

As the normalization term in equation 3.43 is computationally too expensive to calculate,
they propose a few methods to overcome the problem. For example, instead of considering
all words, they only consider a fixed number of tokens drawn from a distribution of negative
samples.

The resulting vectors have an astonishing quality. An often cited example is that w“King”−
w“Man” + w“Woman” results in w“Queen”. This distinctly highlights how simple vector oper-
ations in the constructed space can translate meaning. Such word vectors are much more
expressive than raw tokens when used as input to an learning algorithm. For instance, they

4Strictly speaking, they distinguished between ordinary word vectors and those of contextual words taken
from different weight matrices in their network architecture.
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allow that a word can be understood even if it is not in the training set as long as a synonym
has been seen in the learning phase.

3.3.5. Deep Learning in CV

Aside from NLP, there is a variety of other research fields that have benefited from deep
neural network architectures. An interesting architecture has been recently proposed by
Badrinarayanan et al. [1]. They use a deep CNN with an encoder-decoder structure to
segment an input image. So, instead of directly converting the input image into a segmented
image, they compress the input and up-sample this representation and yet reach competitive
results in this first architecture appliance.

Another emerging field of CV is video recognition. Karpathy et al. [35] proposed an
architecture that uses CNNs with a fixed-sized temporal window and showed that this
architecture can beat single-frame considerations. Donahue et al. [15] suggested a more
promising architecture for video recognition, that encodes frames through a CNN and learns
their interdependencies using an RNN.

The CV task that has gotten the most attention due to its success with deep learning
models is object recognition. The first incredibly successful deep learning network was
AlexNet [39]. There had been a lot of improvements since AlexNet was published [58, 59].
Currently, the Inception model by Szegedy et al. [60] is considered as the best network for
object-recognition and it has been proven successful when transferring the model to other
tasks [64]. The model has a depth of 42 layers while minimizing the number of parameters
to learn and the computational cost of a forward-sweep compared to competitive models.
This is achieved by carefully engineered layers and state-of-the art regularization techniques.
On account of this, we decided to use the InceptionV3 model to encode images in our
architecture.
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4. A Deep Neural Network Architecture for
Multimodal Document Comprehension

The work that has been done to accomplish this thesis will be summarized in this chapter.
The overall task is to implement a novel system that has human intuition when judging the
interrelation of co-occurring images and texts and therewith being able to fully comprehend
individual modalities and to conclude whether missing or additional information can be
taken from the other modality to enrich and augment the perceived information. Our main
incentive is, that humans use several modalities to convey information that complements
one another. This insight has been already stated by others (e.g. [3]), but it has been poorly
addressed by the related work as outlined in chapter 2, which is mainly due to difficulties in
modeling human intuition and because of the immense computational power necessary to
process enough data to learn an appropriate understanding of the world, which is necessary
when considering multimodal documents from unconstrained domains. Most multimodal
document sources use a specific modality to convey information that is easier to perceive
by the intended receiver as if another modality would be used. In the specific case of co-
occurring images and texts, the document text normally does not explain what is visual
obvious (which is the primary goal of image-captioning systems). Instead, the text encodes
information that is hard or infeasible to visualize in a single image, such as sequential
information or specific facts (e.g. a calendar date or name). On the other hand, images
are easier to perceive and can depict some information far more succinctly (e.g. shapes and
textures).

To meet this claims, a diverse database, that sufficiently encodes knowledge about the
world, represents natural co-occurrences and allows to understand the semantics of images
and texts is needed. To achieve this, we combine three different datasets to meet each of
the previously stated goals. The specifics of each dataset as well as their importance will be
clarified in section 4.1. The first dataset (subsection 4.1.1) shall enable the system to learn
a translation of salient information from one modality to another. Therefore, an image cap-
tioning dataset is used as it uniquely represents how the semantics of both modalities are
captured by humans, if they are considered separately. A news article dataset (subsection
4.1.2) is used as an example corpus of particularly complicated image-text relation, as their
content is typically loosely correlated and the meaning of their co-occurrence mostly hard to
interfere. Supplementary, a dataset of encyclopedia articles (subsection 4.1.3) is included,
to incorporate knowledge about the world. This is necessary, as the understanding of rela-
tions between different modalities often requires background knowledge. The encyclopedia
dataset, that we call SimpleWiki dataset, is a new dataset, that has been collected by us
to meet the requirements that we demand from a representative dataset.

The human learning process is twofolded: supervised and unsupervised. We are observing
the world and draw our own conclusions from it, but we get also directed and corrected by
the people surrounding us. For instance, if we observe elephants, we are capable of extracting
prominent features (shape, trunk, skin color, etc.) and generalize all elephants into a single
concept without supervision. However, someone has to tell us, that these mammals are
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(a) The autoencoder encodes an image-text
pair into a compact representation. Sub-
sequently, a decoder network tries restore
the original image-text pair.

(b) The classifier uses the encoding architec-
ture from the autoencoder to map an in-
put pair onto a multimodal embedding.
A classifier on top of that embedding
quantifies the image-text relation.

Figure 4.1.: The simplified architectures of the autoencoder and classifier.

called “elephants”. Hence, the overwhelming majority and the apparently more complicated
part of the work is done fully unsupervised. This approach is encouraging, as it may allow to
learn complex system with just a small portion of supervised interference. Still, annotated
training data is necessary to direct the learning process such that the semantic outcome
aligns with our understanding of the world.

Maybe, it is even possible to invent a system that learns without any supervision, just
as humans can learn new concepts fully unsupervised (e.g. from books). However, the
semantics of language must be understood prior to learning in such a system. That those
semantics can be inferred without any supervision is questionable. The meaning of many
words might be trainable only from their context. However, to gain real world knowledge,
some words have to be mapped to real world entities to grasp our semantic meaning. Such a
mapping would be a supervised or weakly supervised (cp. section 3.3) act through suitable
datasets. On the other hand, it is likely that all necessary links are already available in
datasets from the Internet. Nevertheless, this approach would be less directed and more
complicated1 and is therefore neglected in all further explanations.

To sum up, the general idea of our system is to unsupervised generalize concepts observed
in each modality as well as to unsupervised learn the translation of a concept from one
modality to another. Subsequently, human annotations shall guide the system to judge
about the relation of image-text pairs.

The annotations shall quantify the relations in terms of shared information and shared
meaning. Therefore, we invented two measurements Mutual Information and Semantic
Correlation, as we think it is much easier to quantify the complex relation by means of two
rather than one score. Both measurements, the labels assigned to them and the annotation
process will be explained in section 4.2.

The ability to generalize concepts and to capitalize background knowledge in further
comprehension tasks should be achieved by an autoencoder, whose specifics are explained
in section 4.3. The overall system architecture of the autoencoder is depicted in figure 4.1a.
An encoding and a decoding network are trained to learn a comprehensive and meaningful
feature representation. Finally, the part of the dataset we annotated is used to teach
the system human intuition when judging the co-occurrence of a text with an enclosed
image. This human judgment is mimicked by a multiclass classifier, that is trained above

1Humans do not expect their children to start learning from books. Instead, they choose the approach
explained beforehand.
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a multimodal embedding space, which has been learned by the autoencoder. This classifier
is described in section 4.4. An architectural overview of the classifier is depicted in figure
4.1b.

4.1. Datasets

To ensure a vast variety of the amount of complementary information in image-text pairs,
we gathered documents from a broad scope of sources. In the following, we explain the
individual datasets that have been selected and combined to train our system. How these
datasets have been utilized for our task is explained in following sections. Furthermore, in
section 4.1.3 we will explain how we retrieved the newly generated SimpleWiki dataset.

4.1.1. Microsoft COCO Captions

The MS COCO dataset has been generated for image-captioning tasks by Chen et al.
[10]. Therefore, they collected images from Flickr2, depicting various scenes and objects.
The dataset contains nearly 165, 000 images with a split of ≈ 50% for the training set
and a validation and test set with the remainder of ≈ 25% each. They crowdsourced
multiple human-generated captions for each image, where they were asking for captions
that briefly describe what is visually obvious and prominent in the image and does not
require an interpretation. Images were labeled with 5 captions from different annotators,
except from a fraction of 5, 000 images belonging to the test set, that received 40 captions
each. The training and validation sets are freely available. The test set is not directly
accessible. But they provide an evaluation server, that computes typical metrics used to
score auto-generated captions. Hence, one might test its image-captioning algorithm by
sending generated captions on test images to the server, that computes a set of metrics
incorporating human-annotated reference captions. This procedure shall ensure, that test
samples have not been accidentally used during the training phase and that implemented
systems are comparable.

Figure A.1a shows that the sentence structure is relatively uniform across the validation
set, which is the part of the dataset that we are using. Sentences tend to be short, which is
a sign for easy structured and easy understandable content.

We consider this dataset as it provides pairs with a strong relationship, what typically
does not appear in a natural environment. Having samples that state what is visually
obvious is essential to learn the semantics of the image content. A deeper, complementary
relationship can only be understood, if the two entities themselves have been comprehended.

4.1.2. BBC News Corpora

News articles have a particularly interesting relation to their co-occurring images. Mostly,
there are neither direct references in the text to the image content nor is their semantic
correlation easily inferable. Even humans do often need the enclosed caption to see why
the image fits to its article. For instance, imagine a news article about a new canteen at
a certain university, that is published with a photograph of the university its president.
However, the article might not mention the president and so it is up to the image caption to
allow the understanding of this co-occurrence. To avoid the immense reliance on captions,

2https://www.flickr.com/
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extensive background knowledge might close the gap as well. In general, humans are not
capable of memorizing such minor details (e.g. the president of some arbitrary university is
considered non-relevant). On the other hand, as computers can access arbitrarily detailed
knowledge bases, they can theoretically omit the caption and yet understand a complex,
but meaningful, image-text co-occurrence.

Those complex relations should be represented by news articles in our dataset. There
are several news datasets freely available. The ION dataset by Hollink et al. [28] contains
over 300, 000 news articles collected from several newspapers over a timespan of one year.
The dataset contains features for the article texts and images, but not the raw data itself.
However, the URLs are included and they provide a software to re-extract the articles.

Ramisa et al. [55] recently published a new dataset with 100, 000 articles, called Break-
ingNews. The articles have been collected from various sources in 2014. Again, the published
data contains mostly features, metadata and URLs to the original articles. Additionally,
they performed various tasks on this dataset including caption generation. Therefore, they
encoded a word embedding matrix as well as the image with a CNN and trained an LSTM
language model on top to produce captions. Their captioning results are poor, which may
come from the loose relation between an article text and its image as mentioned above.

Another dataset, that is known to us, is the BBC News Database from Feng and Lapata
[19], which contains over 3, 300 articles. Each article is represented by three files, one
containing the article text, one containing the image caption and one is the actual image
file. The article text still comprises some basic HTML formatting, such that the original
text structure (e.g. sections, subsections) is preserved. Furthermore, they provide a data
split into training and test (≈7%) set.

They reused the dataset in [20] for caption generation. However, they faced the same
problems as [55]3 and achieved poor results. This is one of the reasons, why we believe that
captions, as they appear in a natural environment, cannot be generated by a system that
does not aim to explicitly encode knowledge about the world, such that the relation of two
seemingly unrelated entities can be inferred.

We decided to incorporate the BBC News Database into our work, as it is ready to use
and assumed to be sufficiently sized to meet our needs. News articles generally express a
voluminous content with ≈ 51% of the articles having more than 20 sentences and ≈ 60%
of the sentences have more than 20 tokens, when excluding headings (cp. figures A.2a and
A.1b). Beside of this inherent complexity, a large vocabulary and a wide range of topics,
that incorporates many minor local events, introduce a particular hard comprehension task,
that is even for humans challenging.

4.1.3. SimpleWiki Dataset

An online-encyclopedia like Wikipedia is a massive knowledge base, that is at the same time
structured and sufficiently trustworthy. In the past, there have been several attempts to em-
brace the enormous amount of information available in such sources (e.g. [27]). Wikipedia
contains general knowledge about the world, but also specialized knowledge about individ-
uals, historic as well as recent events or even proprietary products. However, many articles
are not or at least difficult to understand for someone who is outside the subject area.

3Beside of the caption generation, they also proposed a method to extract a sentence from the article text
that can serve as a legitimate image caption. But as outlined above, such sentences typically do not
appear in a news text.

31



Another aggravating factor is, that many articles do not have a consistent textual descrip-
tion in their section, as it comprises a lot of special characters and formula. Therefore, we
decided to use Simple English Wikipedia4 (SimpleWiki) instead of the more extensive but
also more complex English Wikipedia.

SimpleWiki is the same as the normal Wikipedia, except that it aims to convey complex
matters with simple textual description, such that everyone can understand the article.
This leads to texts that use simple words and grammar, are more coherent and do only
require basic mathematical knowledge.

We have implemented a Web crawler, that takes a list of all available article IDs and
shuffles them to download articles in a random order. The crawler can be interrupted and
relaunched at any time. The articles are downloaded such that their hierarchical section
structure is preserved. For each section (or subsection) the text is stored (formula are
ignored). Additionally, lists and keywords are extracted as well as enclosed images. All
graphics5 are converted to the JPEG format. Alpha blending is used to resolve transparency
by putting the graphic on top of a white background. SVG graphics are rasterized and for
GIF graphics only the first frame is considered. To ensure memory efficiency, all images are
down-sampled resp. up-sampled using bicubic interpolation. The original aspect ratio will
be kept, but the smaller dimension is set to 346 pixels. The gathered images are stored in
its original server folder hierarchy, whereas the top folder has as name the first letter in the
MD5 hash of the image filename and the image-containing subfolder has as name the first
two letter of the same hash.

The articles themselves are stored in JSON format, which are all stored in a JSONL
file. The exact article format can be viewed in appendix A. Currently, the dataset consists
of 3764 articles containing 2999 images. As mentioned before, the Web crawler can be
restarted at any point to gather additional articles.

Even though the text structure can be assumed to be much simpler as in the normal
Wikipedia, figure A.1c shows that the structural sentence complexity is more similar to the
one of the BBC News Database than the one of the MS COCO dataset. Figure A.2b shows,
that many sections convey their content in a very short form, which is favorable, as the
comprehension of short texts is easier.

Before we close the section, we want to mention an alternative dataset that might replace
or enhance a collection of datasets as we use. Villegas and Paredes [63] published an
automatically collected image-text dataset from crawling webpages on the Internet. The
dataset consists of 250, 000 images together with their captions and surrounding text. Just
like many others, they distributed feature vectors instead of the raw data to avoid copyright
issues. Even though working with such samples is the overall goal of this thesis, there are
several reasons why we consider such collections as unsuitable for a first system. First of
all, the data is extremely noisy, as they are from arbitrary websites and the text extraction
is heuristically. On the other hand, the intentions that we associated with each of the above
datasets can not be met. For instance, credential sources to learn the desired background
knowledge are missing. Furthermore, many samples might use colloquial language. Note,
all the datasets we utilize do not incorporate colloquial language (e.g. from social media
sources), as it was thought it would induce a too high level of complexity for the time and
computational power available in this thesis.

4https://simple.wikipedia.org
5As almost all graphics are in JPEG, PNG, SVG or GIF format, graphics of other formats are ignored.
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4.2. Quantifying Human Intuition

In order to guide a learning process such that it perceives co-occurring image-text pairs in
the same way as humans do, annotated training samples are required. Before we state the
labels that have been hand-crafted to serve the training supervision, we aim to convey the
intuition behind the two annotated characteristics, namely Mutual Information and Seman-
tic Correlation. In the following, we will try to clarify what we are trying to achieve with
our annotations and we will justify them with methodologies borrowed from information
theory.

Our first attempts to find a proper annotations have been similar to many of the works
presented in section 2.2, as we tried to quantify an intuitively estimated Semantic Cor-
relation. Consequently, the initial goal was to label the correlation of documents6 by a
correlation term that ranges from a negative number to a positive (e.g. [-1, 1]). Well, such
a correlation coefficient is not applicable in our case, since we do not measure the correla-
tion of two random variables which can be viewed as self-contained entities. Instead, each
random variable (each modality) captures an abundance of information, where some of this
information might be intuitively positively or negatively correlated.

To further investigate this problem, a quick recap of basic definitions taken from infor-
mation theory is required. In information theory, the behavior of a communication channel
is described with mathematical tools (e.g. statistics). The most basic model is to think of
a sender that encodes information. This encoded information is subject to noise during the
transmission on a channel. It does depend on the occurred perturbations and the encoding,
whether the receiver is able to decode the original information. The information, that is
encoded in a transmitted message, shall reduce the uncertainty on the receiver side. If the
received message can be fully predicted by the receiver, then the message does not contain
any information. In other words, the more unlikely an information is, the higher is its
information content.

Entropy measures the information emitted by a sender. It describes the average amount
of information, that is revealed by a received message X, where X is an unknown message
(random variable). Hence, entropy can be computed by summing over all possible messages

H(X) = −
∑
x

p(X = x) log p(X = x) . (4.1)

We can think of X as an image or a text. Recall, that we intuitively attempted to estimate
a correlation. In information theory, a correlation is mostly expressed by measures such as
Mutual Information or the Kullback-Leibler divergence. We stick to Mutual Information,
since it is more intuitive, as we will see later.

Mutual Information describes the amount of information, that is shared by two received
messages X and Y on average

MI(X,Y ) = H(X)−H(X|Y )

= H(X) +H(Y )−H(X,Y ) .
(4.2)

Equation 4.2 can be interpreted as the average information that can be taken from X

6The term document refers to a multimedia document (e.g. a document containing textual and visual
objects). Given the context of this work, such a multimedia document usually comprises a text enclosed
by an image.
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A yellow circle with a
diameter of 2cm.

Figure 4.2.: Example of a text and an image, that convey the same information

minus the average amount of information that Y does not reveal about X. So, if Y fully
describes X, then MI(X,Y ) = H(X). Contrarily, if Y does not reveal any information
about X (meaning H(X|Y ) = H(X)), then the Mutual Information is zero. However, this
measurement is not interesting to accomplish our goal, since we only consider a certain
text resp. image. This can be achieved by the so called Pointwise Mutual Information. Let
X = x and Y = y, then the Pointwise Mutual Information is defined as

pmi(x, y) = log
p(x, y)

p(x)p(y)
. (4.3)

First, it has to be clarified what the desired intuition is in order to find out whether
equation 4.3 matches it. While having the information theoretical background in mind, a
few examples shall be considered.

As highlighted above, all that has to be known to measure information is the probability
distribution that describes how the sender ejects messages. In the context of this work two
senders have to be considered, one that emits images and one that emits texts. Each of the
following examples should emphasize properties of these probability spaces as well as their
differences.

Example 4.2.1. Figure 4.2 shows the rare case, that a text and an image actually depict
the same information. However, it is easier for humans to perceive attributes such as shape
and color from the image, whereas an attribute such as the exact size is easier to read from a
text rather than from an image. There are two major takeaways from this example. Firstly,
some information can be expressed in either of both modalities. Though, it is not clear yet,
whether this accounts for all kinds of information. This means, that images and texts can
actually share information. Secondly, different modalities can make the same information
differently difficult to perceive. This leads to a natural usage where the depicted information
shall complement one another such that each modality depicts partially unique information,
that is easier to read from it than from other modalities.

Example 4.2.2. Consider the following simple sentence.

Leibniz was born in 1646.

It is not possible to display the same information as a photograph without utilizing natural
language. Every attempt to display this fact would result in an image that contains a massive
amount of additional information such as facial details of Leibniz and historic events that
are unique to that year. From this it follows that equal information content in different
modalities is not always possible. For this example it can be concluded, that there are image-
text pairs, where the information encoded in the text is always a subset of the information
depicted in the image. Leading to the assumption, that the sought probability spaces are
different. Hence, probabilities estimated for one modality cannot be transferred to another
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Figure 4.3.: The exact shape of the depicted leaves can not be described in a finite text
without the usage of math.

one. I.e. the assumption from [66] stated in section 2.2, that the distribution of latent hidden
topics might be equal, does not hold in general.

Example 4.2.3. Figure 4.3 depicts a cartoonish flower. Hence, the graphic is not as
complicated and detailed as a photograph (e.g. missing textures). However, describing the
exact shape of the leaves in a text would be an inherently complex task if mathematical
tools are not available. Once again it can be stated, that the probability spaces to emit
information are obviously not completely the same. This observation excludes any model
that would reduce the problem to a single modality. For instance, a model that translates
images into text (e.g. an image description generation algorithm) and then compares the
semantics of two entities from the same modality (e.g. paragraph detection) would not work.

It should be acknowledged, that different modalities are intentionally not used to convey
the same information. Moreover, a modality shall contain the information that is not or
not as easily expressible in another one.

Example 4.2.4. In this example it should be illuminated, how tiny perturbations can change
the overall semantics. Therefore, we consider figure 4.4. All of these images share a massive
amount of information (i.e. there is a lot of mutual information). If the graphics would be
photographs, there would be even more shared information due to complex textures, shapes
and backgrounds. Yet, all of these figures differ in a certain detail.

If a group of people would have to decide which two of these figures are more similar, most
of them would decide on figures 4.4a and 4.4c. This is due to the fact, that some details
are more important for the grasped semantics than others. For instance, a human generated
caption for figure 4.4a would probably contain the term “happy family”, but presumably not
the term “blue plate”.

The following text could be associated with one of the pictures.

A family of four is sitting at a table to have a warm
meal. They are all talking elaborately about their day.

As usual, the text and image complement one another, as the text merely states what is
visual obvious but provides additional insights in the temporal occurrences of the depicted
situation. Though, figure 4.4b does intuitively not fit to the text, as experience teaches that
a sad mood comes along with less talking. Note, that the text contains no direct hints about
the facial expressions or the mood of the people. On the other hand, figure 4.4a and 4.4c
are equally good choices to enhance the text.
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(a) Happy facial expressions. (b) Sad facial expressions.

(c) Color of plates has changed.

Figure 4.4.: All pictures show a dining family, but they differ in a certain detail. In figure
(a) and (b) the attribute happy has been changed to sad, whereas in figure (a)
and (c) the attribute blue plate has been changed to white plate. The change
occurring in (a) and (b) modifies the intuitive semantics, while the change from
(a) to (c) is negligible.

If the information conveyed by each entity of a pair contradicts each other, as the text
from example 4.2 combined with figure 4.4b, a negative correlation would be desirable to
express the situation, even if they have a high amount of mutual information. Such an
outcome is expressible by equation 4.3. Experience would cause p(x, y) to converge to zero,
where x could be the text and y the image. But as x and y are valid representations
of their modalities if considered separately, it is clear that the marginal probabilities are
substantially greater than the joint probability, i.e. p(x)p(y) > p(x, y).

However, to compute the Pointwise Mutual Information proper marginal and joint prob-
ability estimations have to be known. Assume an unsupervised scheme that has access to
a large collection of documents with a massive amount of distinct sources. Could such a
scheme estimate a meaningful probability for a text x?

x = “ I︸︷︷︸
w1

am︸︷︷︸
w2

studying︸ ︷︷ ︸
w3

for︸︷︷︸
w4

the︸︷︷︸
w5

next︸︷︷︸
w6

exam︸ ︷︷ ︸
w7

.”

p(x = w1w2w3w4w5w6w7)?

An effective approach to build language models has been Näıve Bayes. But one should
keep in mind, that subtle difference can change the overall meaning of an entity. Therefore,
any kind of independence assumption would destroy the estimations. On account of this and
the prior explanations, we claim that it is impossible with any statistical model to estimate
probabilities from such diverse sources such that a computed score based on equation 4.3
can match our intuition.
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Moreover, exact correlation scores are not desirable, since they cannot be verified and
do not mirror human capabilities. In addition, we argue that human intuition is not inter-
pretable as a single score. For instance, a poem about peace combined with an image that
depicts an area of conflict should be distinguishable from the above example for negative
correlation. This is due to the fact that both entities do not share information, whereas the
previous example possesses a huge amount of mutual information.

Therefore, we propose two categorical resp. ordinal measures: Mutual Information (MI)
and Semantic Correlation (SC). Note, that the measure MI that we defined is not the same
as the information theoretical measure defined in equation 4.2. There are a few things to
acknowledge in order to understand the meaning of both measurements. Most importantly,
negative correlation does only exist on a semantic level. Consider two sources that would
emit figures such as figure 4.4a and 4.4b, that are equal except for a few details. Or to be
more precise, the joint entropy of both sources is nearly as high as the marginal entropy
of each individual source, since there is only a small amount of information that has to be
conveyed to describe one of the images given that the other image is known. Obviously, it is
easier to decide whether two entities share a lot of information than to decide whether their
differences can cause a major shift in their semantic interpretation. Supplementary, the
amount of shared information is not particularly important to judge semantic correlation.
For instance, the concept spring can be equally well represented by an image of a single
flower as by an image depicting the annual spring festival. Both of these images do not share
information (i.e. SC is high and MI is low). Otherwise, if one of the pictures is perturbed
such that snow is visible, then SC should be low, whereas MI can be still estimated as
high compared to the original image. From this it follows, that both measurements can be
separately determined. There is no mutual dependence among them.

Nonetheless, SC as well as MI are crucial for our task and further applications. Whereas
SC describes how well two entities fit to each other, MI predicts how much complementary
information can be taken from another entity. For instance, consider the task of automat-
ically retrieving a few documents that contain as much information about a concept as
possible. This could be achieved by querying documents with high SC and low MI.

In the following two subsections, we will further outline the measurement separately
and explain the annotations we have chosen. Subsequently, we will explain the annotation
process itself.

4.2.1. Annotations to adequately express Mutual Information

Here we want to further elaborate the meaning of Mutual Information (MI) in the context
of our annotations. There are 5 basic cases to consider (depicted in figure 4.5). The by far
most prominent case is depicted in figure 4.5c as x∩y. This case sketches how co-occurring
image-text pairs are naturally used, i.e. they share information to some extend, but the
overall intention is to provide additional information through each modality. Therefore, we
decided to pay extra attention to this case.

Table 4.1 presents the labels we have chosen together with their description. To simplify
the annotation process, labels are typically associated with two descriptions. The first one
describes the properties an image should have under consideration of the text, whereas the
other one describes the constraints a text has to satisfy under consideration of the image.

37



x y

(a) x ∩ y = ∅

x y

(b) x = y

x y

(c) x ∩ y

x
y

(d) x ⊂ y (or y ⊂ x)

Figure 4.5.: Possible MI states of a text x and image y.

Label Description

0 – T ∩ I = ∅ The content of the text and the image do not overlap. Not even a
contextual relationship can be built.

1 – T = I The image depicts solely situations/actions/characteristics that are men-
tioned in the text. Nothing is depicted which can not be concluded from
the text.

The text describes exclusively the image. The content description is
complete and rich in detail and all outstanding characteristics are men-
tioned. (The text alone shall be sufficient to be able to imagine the
depicted scenery without prior knowledge of the image.)

2 – T ∩ I The image depicts, subjectively seen, more important characteristics
than the text describes. Though, part of the image is described ex-
haustively in the text.

The text describes a process/story, where an excerpt is depicted in the
image. Particularly, the text references to details in the image.

3 – T ∩ I The image can be viewed as a summary of the text content, but only by
neglecting many of the details. (e.g. photo of the conflict area, whereof
the current news story is reporting about)

The text sketches the image but on an abstract level such that many
different pictures would be similarly well described by the text.

4 – T ∩ I The image concentrates on a detail of the text.

or

The content of the image is not explicitly mentioned in the text. How-
ever, due to background knowledge the image can be brought into con-
text.

The text only describes a part of the image.

or

The text describes a storyline which is usually associated with the image
due to background knowledge.

Continued on next page
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Label Description

5 – T ∩ I The image depicts one of the aspects of the text. (e.g. a typical repre-
sentation of a keyword is shown)

The text is mainly concerned about a minor detail of the image.

6 – T ⊂ I The image depicts, subjectively seen, more important characteristics
than the text describes.

Everything mentioned in the text can be related to the image.

7 – T ⊃ I The image depicts solely situations/actions/characteristics that are men-
tioned in the text. Nothing is depicted which can not be concluded from
the text.

The text describes a process/story, where an excerpt is depicted in the
image.

Table 4.1.: Annotation guidelines for Mutual Information

Note, that label 4 and 5 incorporate background knowledge. This is a tricky part that
is caused by the varying visualness of concepts [68]. For instance, the word spring could
be represented by an image of a flower meadow. It is hard to objectively quantify mutual
information of such concepts. Therefore, we decided to rate them with low MI rather than
none. In other words, if a concept does not have an obvious and unambiguous representation
within the other modality, then we quantify it with low MI, if the semantic correlation
between them is considered as high. Note, that this does not mean that the semantic
correlation between the considered entities must be high, as each of them can contain an
arbitrary number of concepts. Example 4.2.5 presents such a case.

Example 4.2.5. Figure 4.6 depicts a short news article and an image that might be enclosed
to it. The scenery described by the text is conflictive with the one shown in the image. Hence,
SC should be negative. Interestingly, the concept “spring” appears in the news article. This
concept has no obvious visual representation. However, figure 4.6b has intuitively a high
semantic correlation with that concept. Therefore, it can be assumed that the shown co-
occurrence it is not completely meaningless. Probably, the author of the article wanted to
depict how it usually should look like. This can be captured by a low mutual information
(e.g. 5).

This example illuminates a complex relation between an image and a text, that is far
easier to quantify with two measurements rather than one.

4.2.2. Annotations to adequately express Semantic Correlation

This subsection presents the annotations used to quantify Semantic Correlation (SC). An
extensive amount of background knowledge is required in order to properly grasp semantic
correlation. The ability to infer the central theme of an entity and to omit insignificant
details is inevitable. Additionally, the central themes of two different modalities have to be
aligned in order to quantify their relation. As this is also a challenging task for humans,
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Nature still doesn’t show that
spring has already arrived. The
weather remains wet and cold,
partly frosty.

(a) News article, that implies muddy forests
without blooming flowers.

(b) Blooming flowers in spring.

Figure 4.6.: Example of an image-text pair with contradicting semantics (negative SC).
Nonetheless, the low-visual concept spring does appear in both, causing low
MI.

we decided to annotate on a small scale that requires only approximate decisions. The
annotation guidelines are presented in table 4.2.

Label Description

1.0 The meaning expressed by the image and the one expressed by the text
are almost identical.

0.5 There are slight variances in the expressed semantics. Although, the
impressions made by each of them are quite similar.

0.0 The semantics of image and text are not correlated to each other. Note,
even if both share mutual information, the meaning which is expressed
by them might yet be unrelated.

-0.5 The image depicts a scenery that fits to the text, but was incorrectly
interpreted.

or

A critical detail of the image leads to an opposite interpretation of text
and image. (e.g. a campaign event of the Republic party is shown,
whereas the text reports about a campaign event of the Democratic
party)

or

Keywords from the text can be identified as actions or objects in the
image, but they appear in a whole different context.

or

One of the main story characteristics of the text is incorrectly depicted
by the image. (e.g. a male protagonist is depicted by a female person)

or

Continued on next page
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Label Description

The actual content of the text has no relation to the image, but the text
refers to some details which are either depicted as described or at least
depicted similarly in the image. (e.g. a text about nutrient-rich soil in
forests has an image that depicts an indoor plant)

-1.0 The text describes the opposite of what is depicted in the image.

Table 4.2.: Annotation guidelines for Semantic Correlation

4.2.3. Annotation Process

Annotations have been gathered for subsets of all three datasets described in section 4.1.
While the annotations for the MS COCO dataset have been heuristically generated, the
other two datasets have been manually annotated by the author of this work. In order to
do so, two tools have been developed to assist the annotation process: the bbcAnnotator
(figure 4.7) and the wikiAnnotator (figure 4.8).

Both annotation tools have the ability to read the dataset and to store the made annota-
tions into a JSONL file. Before we mention features that are unique to each tool, we want
to shortly summarize some shared properties. The tools provide cross-platform support for
Linux, Windows and Mac OS (only tested on Linux and Windows) and are implemented
in Java 8. To prevent data loss, the annotation tools instantly backup changed annotations
using HSQLDB. The backup is locally stored and reread on program start to allow that
the annotation process can be continued from the last modified annotation state. Each tool
provides a variable wide window to display an image text pair. The text window highlights
headings and allows to change the font size (Ctrl + Mouse Scrolling). Images are displayed
together with their caption, as the caption might provide the necessary background knowl-
edge to annotators, that is necessary to map the semantics. Pagination allows to navigate
between image-text pairs, either by selecting neighboring pairs or by jumping to a prede-
fined position. The user might annotate the following properties for the currently depicted
image-text pair:

• Mutual Information: The user should select a label to rate MI according to the
annotation guidelines given by table 4.1.

• Semantic Correlation: The user should select a label to rate SC according to the
annotation guidelines given by table 4.2.

• Relevant Text Snippets: The user can mark and add text snippets from the text
window that directly refer to the image or describe content visible in the image (does
not have to be comprehensive; may describe only a part of the image).

• Image Type: The user should further define the type of graphical representation
that is visible. Therefore, he/she can choose one of the following image types: ”Chart
– Bar Chart”, ”Chart – Flow Chart”, ”Chart – Histogram”, ”Chart – Line Chart”,
”Chart – Pie Chart”, ”Chart – Tree Chart”, ”Chart – Other”, ”Drawing”, ”Graph”,
”Map”, ”Photograph”, ”Table”.
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Figure 4.7.: Screenshot of the bbcAnnotator. The content had to be blurred due to copy-
right reasons. The sample where the content had been taken from is called
“Toll rises after Chinese floods 271” and is located in the training set of the
BBC News Database [19].

Figure 4.8.: Screenshot of the wikiAnnotator. The content originated from the article
https://simple.wikipedia.org/wiki/Air. Textual and graphical content
are released under CC BY-SA (https://creativecommons.org/licenses/
by-sa/3.0/).
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1 {
2 "sc":0.0,

3 "mi":0,

4 "snippets":[ ... ],

5 "type":"",

6 "name":"",

7 "train":true

8 }

Fragment 4.1: JSON object that defines the annotations for a sample made with the
bbcAnnotator

To export the annotations, the user may save them as a JSONL file. Samples annotated
with the bbcAnnotator will have a format as defined by the JSON object in fragment 4.1.
The following listing will describe each property of the depicted object.

• sc: The SC label that has been assigned to the sample according to table 4.2.

• mi: The MI label that has been assigned to the sample according to table 4.1.

• snippets: A list of strings, that have been considered by the user as direct reference
to the image content.

• type: A string identifying the type of graphic (the chosen Image Type).

• name: The name of the sample.

• train: A boolean flag, stating whether the sample has been originally taken from the
training or test set.

The wikiAnnotator has some extra features due to the varying article structure. In
addition, it provides mechanisms to validate a depicted sample, as the dataset has been
newly generated. Every page depicts another article, that may contain several images.
However, for each image and its associated text a separate annotation has to be created. As
mentioned in section 4.1.3, images that co-occur with an article summary are associated with
the text of the whole article. Other images are only associated with the text of the specific
section in which they occur. The wikiAnnotator has an additional annotation option, which
allows to mark an extracted sample as invalid. This might be due to several reasons, that
could not be handled during the automatic retrieval. For instance, lists are omitted from
the section text. However, the remaining text in a section might be meaningless without
the filtered content. Hence, the user possesses several features to evaluate the validity of
a sample in case the text appears strange or inconsistent. First, one may see the original
website for a direct comparison. In addition, one may review the filtered content or the
identified keywords under the tab Additional Infos. In the image view, the tab Meta allows
one to see the meta data (e.g. license information), that has been retrieved together with
the image. Furthermore, one can inspect the keywords, that have been identified in the
caption.

1 {
2 "sc":0.0,

3 "mi":0,
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4 "snippets":[ ... ],

5 "type":"",

6 "id":1,

7 "name":"/wiki/File:filename.jpg",

8 "section":"",

9 "valid":true

10 }

Fragment 4.2: JSON object that defines the annotations for a sample made with the
wikiAnnotator

Similar to the bbcAnnotator, the annotations can be exported as a JSONL file. The
annotations of a single sentence are defined in fragment 4.2. The following listing defines
the properties that differ from fragment 4.1.

• id: The ID of the article, where the sample appears in.

• name: The name of the image file.

• section: The name of the section, that the sample has been associated with. If
associated with the whole article, then this field is assigned with the value “Article”.

• valid: A boolean property that states, whether the sample is a valid sample or not.
If not, then it should be discarded from further processing.

Now, as the annotation tools have been clarified, we want to further elaborate how the
annotations have been retrieved. In total 761 samples have been manually annotated using
the above explained annotation tools. The exact distribution among the considered datasets
and image types is depicted in table 4.3.

BBC News Database SimpleWiki dataset

Total 205 556

Photograph 200 397
Drawing 5 90
Map – 29
Charts – 7
Graph – 6
Table – –

Invalid – 26

Table 4.3.: Number of samples that have been annotated using the bbcAnnotator resp.
wikiAnnotator plus their distribution among different image types.

All the annotations have been retrieved by the author of this thesis using the guidelines
from table 4.1 and table 4.2.

Tables 4.4 and 4.5 show the label distributions for MI and SC labels on both datasets.
It accounts for both datasets, that the overwhelming majority of samples are image-text
pairs that share information, but mostly in terms of abstract concepts, that typically re-
quire background knowledge to get detected. However, as expected, there is a substantial
difference in the semantic correlation for co-occurring pairs between these datasets. Pairs
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Label 0 1 2 3 4 5 6 7

Total 16 – 1 6 91 91 – –
Percentage 7.8 – 0.49 2.93 44.39 44.39 – –

(a) Distribution of MI labels.

Label -1.0 -0.5 0.0 0.5 1.0

Total 7 28 84 69 17
Percentage 3.41 13.66 40.98 33.66 8.29

(b) Distribution of SC labels.

Table 4.4.: Label distribution of the annotated samples from the BBC News Database.

Label 0 1 2 3 4 5 6 7

Total 28 – 6 46 376 66 – 8
Percentage 5.28 – 1.13 8.68 70.94 12.45 – 1.51

(a) Distribution of MI labels.

Label -1.0 -0.5 0.0 0.5 1.0

Total – 3 26 70 431
Percentage – 0.57 4.91 13.21 81.32

(b) Distribution of SC labels.

Table 4.5.: Label distribution of the annotated samples from the SimpleWiki dataset.

in the SimpleWiki dataset are generally highly correlated with an average semantic cor-
relation of 0.88 (and a mean value of 1.0). On the other hand, the semantic correlation
for the BBC News Database is rather low, having an average value of 0.15 (and a mean
value of 0.0). This observation highlights the difficulties of a news dataset and shows the
inherent complexity that has to be dealt with when interpreting the relation of image-text
pairs occurring in a natural setting.

This can also be seen when considering the number of texts that contain direct references
to the associated graphic or sentences that describe high-visual content of the graphic. 166
(≈31%) SimpleWiki samples contain such relevant text snippets compared to only 9 (≈4%)
of the news samples.

Appendix B compiles the presented annotation statistics for separate image types.
In order to reduce the effects caused by the strong label imbalance, we heuristically gen-

erated samples with high SC and high MI from captioning datasets, namely the MS COCO
dataset. Therefore, we randomly picked a 100 images and their reference sentence from
the MS COCO validation set. All of these image-text pairs are annotated with maximum
semantic correlation (SC is 1.0). The texts are assumed to be fully concerned with their
assigned image. Although, they do not exhaustively describe the image, as they have been
generated with the expectation to describe the most prominent content. Therefore, we
assume that a reference sentence describes the content only partly (MI is 6). As all MS
COCO samples are annotated with the same labels (SC – 1.0, MI – 6), some precautions
had to be taken to avoid that the classifier learns the text length when seeing MI label 6.
Therefore, we have chosen a variable-sized subset of all 5 reference captions associated with
an image and concatenated them to a text.

In summary, we used 834 image-text pairs for classifier training.
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4.2.3.1. A Critical Look at the Annotation Process

The are several steps in the annotation process that can be criticized. First of all, it is not
possible to make any statements about the adequateness of the made annotations as they
all have been collected by a single person. The label distribution might be extremely biased
resp. distorted as our assumption of a uniform intuition among humans can not be verified
without substantial measurements on inter-annotation agreement rates.

Furthermore, it might be that the defined labels to not properly represent the designed
measures MI and SC. Especially the labels 6 and 7 might be unrealistic, because each
entity contains usually information that is not depicted in an entity of another modality (e.g.
shapes and textures in an image). Without these two labels, the annotation process would be
simplified. Additionally, the labeling would represent an ordinal scale and the classification
problem could be phrased as a regression problem, similar to the task of predicting SC.
This can be beneficial, as label differences are naturally encoded in a regression learning
scheme, i.e. misclassifications among close labels are weaker punished than those among
distant labels.

We want to state a few more drawbacks, that we have observed. Firstly, the annota-
tion tools should allow to distinguish between artistic and technical drawings, as these are
extremely different graphic types, that are used for significant distinct purposes. Another
possible drawback is the label assignment we made for heuristically generated annotations.
It might be advantageous to label captioning samples with high MI (e.g. label 1 or 2) in-
stead of considering the information as inclusive. This is for the same reasons as mentioned
above, a simpler labeling might be more expressive. Furthermore, captions usually contain
direct references and share concepts with the image, that have a high visualness. These
are exactly the concepts that should be assigned with high MI values. Supplementary, the
concatenated sentences, which form the text associated with an image, do not represent
a fluent and consistent text. Moreover, they repeat the same information over and over
again, since most human annotators recognize the same prominent objects/actions, which
they summarize in a caption. In other words, most captions that are assigned with an image
can be considered as paraphrases. However, using a single caption as text would probably
lead to overfitting when assigning those samples with MI label 6, as this label does not
occur in the other two datasets.

Lastly, we want to point out, that it is much more complicated to assign negative semantic
correlation. The reason for that is, that an image, which is completely unrelated to its
associated text, is intuitively perceived as negatively correlated. It does require extra effort
to disambiguate those cases.

4.3. Automatic Generalization of Concepts drawn from the World

As it has been highlighted during the description of our measurements (MI and SC), ex-
tensive knowledge about the world is required to quantify the co-occurrence of images and
texts. More precisely, concepts have to be generalized within and across modalities. For
instance, synonyms and paraphrases in sentences resp. texts have to be identified as well as
objects/actions in images. These generalized concepts within modalities have to be mapped
in between modalities. For instance, the high visual word “elephant” should be mapped to
the object elephant resp. the low visual word “spring” should be mapped to scenes that
are unique to this time of the year (e.g. a blooming flower meadow).

A supervised scheme would require an infeasible amount of annotated data to accomplish
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this goal. Therefore, we aim to learn this ability through an unsupervised scheme by using
an autoencoder. An autoencoder is a deep learning architecture that attempts to output
its own input. For instance, this could be done by leaning the identity function. However,
this is only possible if the hidden representations are expressive enough to hold the same
input encoding. For this reason, autoencoders are typically used to learn a compression.
Hence, an encoder network compresses the input onto a lower dimensional representation,
that contains less redundant information. Subsequently, a decoder network decompresses
this intermediate representation back to the original input encoding. The compression
and decompression algorithm (encoder and decoder network) have to be learned. The
intermediate representation (the compressed input) can be considered as a feature vector,
describing the complete input in a lower-dimensional space. To achieve this, the encoder
has to generalize concepts (e.g. objects, shapes, poses in images) that are available in the
input distribution.

The same behavior shall be accomplished with the autoencoder architecture we designed.
The autoencoder and classifier (cp. section 4.4) are implemented in Python 3 using the deep
learning framework Tensorflow7. We used the implementation of Vinyals et al. [64] as a
starting point to implement our own model, as we intended to use the same image encoding
network InceptionV3 [60]. The implementation of Vinyals et al. [64] is currently considered
as the best system for generating image captions. The simplified architecture of the system is
depicted in figure 2.1b. It can be summarized as follows. An image embedding ie is generated
via a fully connected layer from the output of a deep CNN, namely InceptionV3. Words
are mapped onto word embeddings we. These embeddings are learned during training. A
LSTM(zl−1, c) is used to predict a future token, where zl−1 denotes the input to the LSTM
layer and c its memory cell (initialized as c = 0). A fully-connected layer FC is used to
determine the predicted token. Thus, the layer has as many outputs as the number of words
in the vocabulary. To ensure valid start and end conditions8, each caption is augmented
with a specific start and end token. Algorithm 4 illustrates how the system would work
during training (the argmax function is actually replaced by a softmax layer, whose output
is compared with the ground truth via a cross-entropy loss function).

Input: ie, we(1), . . . , we(T − 1)
Output: w∗(2), . . . , w∗(T )

1 c(0) = 0 ; // Initialization of LSTM cell state

2 , c(1) = LSTM
(
ie, c(0)

)
; // Compute beginning cell state, that encodes image

3 for t=1 to T-1 do
/* Predict next token given the image and all tokens up to time step t */

4 w∗e(t+ 1), c(t+ 1) = LSTM
(
we(t), c(t)

)
;

/* Map predicted token embedding to actual vocabulary index */

5 w∗(t+ 1) = argmax
(
FC
(
w∗e(t+ 1)

))
;

6 end
/* The predicted tokens can subsequently be used to compare the predicted caption to the

one associated with the current training sample (compute a loss). */

Algorithm 4: Simplified presentation of the caption generation algorithm from [64] during
training.

7https://www.tensorflow.org/
8If the start token is read, the LSTM should predict the first word in the caption. The caption is complete

as soon as the end token is predicted.

47

https://www.tensorflow.org/


We have kept from this network architecture the generation of image embeddings via
InceptionV3 and word embeddings9. The rest has been exchanged by our autoencoder
model as described in subsection 4.3.2. Before we will explain the autoencoder model, we
will explain how validation and training samples have been prepared for it.

4.3.1. Input Preprocessing for the Autoencoder

Image-text pairs from the MS COCO, BBC News Database and SimpleWiki dataset have
been combined to form a multifaceted dataset. Therefore, all 40, 504 images together with
their 5 reference sentences have been taken from the MS COCO validation set to generate a
total of 202, 654 image-text pairs. These have been merged with 3, 361 pairs from the BBC
News Database and 2, 999 pairs from the SimpleWiki dataset.

This leads to a total of 209,014 samples, that are randomly distributed among training
(190, 202), validation (6, 270) and test (12, 542) set.

All texts have been split into sentences using the Punkt Sentence Tokenizer from the
NLTK 10 package. Subsequently, sentences have been split into tokens using NLTK its
standard word tokenizer.

When considering this raw tokens, the vocabulary is extremely large due to the complex
language used in encyclopedia and news articles. Table 4.6 shows sample vocabulary sizes for
different constraints on word occurrences. Such a constraint is typically made to reduce the
vocabulary size by omitting rare words. Hence, all words that have less than o occurrences
in the training set are replaced by a special UNKNOWN token. For small values of o,
this typically does not result in a significant loss of information, since it is not possible
to infer meaningful embeddings for those tokens. For comparison, Vinyals et al. [64] had
a vocabulary size of ≈ 12, 000 for o = 4, generated from the captions in the MS COCO
training set plus nearly 90% of the MS COCO validation set.

Min. #occurrences 4 5 6 7 8 9 10

Vocabulary size 25, 885 22, 427 20, 156 18, 244 16, 866 15, 721 14, 767

Table 4.6.: Evolution of vocabulary size when increasing the minimum number of occur-
rences required for a word in the training set to be included in the vocabulary.

We have set o to 10. To allow the learning of semantically meaningful word vectors,
the vocabulary size has been further reduced with methods that avoid severe distortions
of the text content. To achieve this, all tokens have been lemmatized using the WordNet
Lemmatizer from NLTK. Furthermore, a dictionary has been used to translate words from
British English to American English for all samples taken from the BBC News Database.
Due to this measurements, the vocabulary could be reduced from its original size of 59, 349
tokens to a final size of 12,591.

To generate a proper initialization of word embeddings, when training the autoencoder,
a Word2Vec model (cp. subsection 3.3.4, [49]) has been implemented11.

Image preprocessing has been done as in [64]. Note, that the image preprocessing step
is actually part of the autoencoder implementation and applied to each incoming image-
text pair (irrespective whether the pair has been seen before). This technique is widely

9Except, that we initialize these word embeddings with pretrained word vectors.
10http://www.nltk.org/
11The Word2Vec model implementation is based on a tutorial available under https://www.tensorflow.

org/tutorials/word2vec/; accessed 2016-12-22.
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Figure 4.9.: The encoder network architecture of the implemented autoencoder. An image
and variable-sized text are mapped onto an article embedding ae.

used to artificially increase the number of training samples and therewith as a method of
self-regularization. All images are resized via bilinear interpolation to hR×wR dimensional
images before random windows of size h × w are cropped from them12. Supplementary,
random distortions are applied to the images to further increase the input variance. These
distortions include perturbations of brightness, saturation, hue and contrast as well as
random horizontal flips.

4.3.2. The Autoencoder Network Model

For efficient input processing, the input samples for the autoencoder are distributed among
several binary files (shards). During training at least two of these shards (≈ 800 samples)
are hold in memory. Random samples are selected out of this pool to generate batches.
Let the batch size be nbs. In addition, let ne denote the embedding size and let V be the
vocabulary.

Figure 4.9 depicts the encoder network, that maps the input onto a feature representation.
We call this feature representation article embedding ae ∈ Rne , since the samples that
shall be classified in a subsequent step originate from articles (news resp. encyclopedia
articles). All weights are initialized according to an uniform distribution if not mentioned
otherwise. The word embedding matrix Wwe ∈ R|V|×ne can be initialized with weights
learned by a pretrained Word2Vec model. The part of the network that represents the
InceptionV3 model is initialized with weights from a pretrained model, to start training
with meaningful image embeddings. The output i′e of the InceptionV3 model is processed
by a fully-connected layer FCei to produce an image embedding ie ∈ Rne , that satisfies the
dimensionality requirements of the autoencoder.

12We have set hR = wR = 346 and h = w = 300.
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The text is processed using a hierarchical LSTM structure, that embeds individual sen-
tences before it infers the semantics of their interplay. The network can adjust to dynami-
cally sized sentences resp. text (though, sentences are constrained by a maximum length).
Such a structure allows a more natural way of text processing, as it allows to consider
sentences as self-contained entities. Furthermore, it is doubtable that a single LSTM layer
can process a text as a sequence of all tokens. As we have mentioned in section 3.3.3, even
LSTM cells have difficulties to maintain long-term dependencies if the input sequence goes
beyond a few hundred items.

Let N be the number of sentences in the current sample and ni be the number of tokens
in sentence i. All sentences/texts in a batch are zero-padded to gain the size of the largest
sample in that batch. Hence, a text T is a sequence of sentences which themselves are
sequences of tokens:

T =
[

[w11 , . . . , w1n1
], . . . , [wN1 , . . . , wNnN

]
]

.

Each token wi is stored as the index of the represented word in the vocabulary. Tokens
are translated to word embeddings by a lookup operation. For the sake of simplicity, this
operation can be considered as a matrix-vector product

wi = WT
weŵi , (4.4)

where ŵi denotes the one-hot encoding of the index wi. Each sentence is subsequently
encoded as a single embedding via an LSTM layer called LSTMes. The sentence embedding
si is the output of LSTMes when processing the last non-padded token in the i-th sentence.

All LSTM layers in our networks use dropout for regularization. Dropout is an effec-
tive and efficient technique to prevent layers from overfitting. Dropout shall prevent that
learning in a layer depends too strongly on single neurons. Therefore, each training it-
eration a subset of randomly selected neurons is gated to have a zero output, such that
back-propagation (and therewith learning) is stopped through those neurons.

The sequence of sentence embeddings, that shall comprise the complete semantic meaning
of a sentence, is processed to a single article embedding by an LSTM layer called LSTMet.
LSTMet computes its initial cell state by looking at ie. Again, as article embedding ae is
considered the output of LSTMet for the last non-padded word. Afterwards, an optional
fully-connected layer FCri can be used to reconsider the image, as the image information
might have gone lost in long texts.

The embedding vector ae is now expected to be a compression of the whole sample. Ide-
ally, ae can be decompressed by the decoder network without loss of information compared
to the original input. The basic architecture of the decoder network is depicted in figure
4.10. The decoder is split into two networks, that receive ae as input.

The upper part of figure 4.10, the image decoding, will be considered first. The user can
actually choose between three different image decoding architectures, where only option 3
is depicted in figure 4.10.

Option 1 is a very basic approach. The embedding ae is mapped onto a large image
through a fully-connected layer, which is then refined by a series of two convolutional layers.
The major drawback of option 1 is the fully connected layer. Assume that the input image
has size h×w. If the FC layer maps ae onto a 2h×2w image, then ne ·4 ·h ·w weights have
to be estimated only for this step. This is infeasible, for the amount of data we are using.

Option 2 uses a fully-connected layer to map ae onto a small thumbnail. This thumbnail
is horizontally and vertically replicated to reach an initial decoding of size 2h × 2w as
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Figure 4.10.: The decoder network architecture of the implemented autoencoder. The net-
work aims to predict the inputted image-text pair from a given article embed-
ding ae.

in option 1, followed by the same convolutional layers. However, this initial decoding
would contain the complete image information in each image region. A CNN, as it only
operates locally, cannot distinguish which part of the global information is significant for
the currently considered region. Thus, the approach is doomed to fail as a CNN layer has
no global awareness.

A trade-off between option 1 and 2 might be a stack of two consecutive fully-connected
layers, where the first layer spreads the visual information from ae vertically and the second
spreads the information encoded in each row (or a local region of rows) from the output
of the prior layer horizontally to generate an initial decoding, which can be locally refined
by a series of CNN layers. For instance, the first layer computes an output of size 2h × c,
where c should be large enough to encode the information of a complete row. This layer
would require to learn ne · 2 ·h · c parameters. The subsequent layer would take a single row
(or a local cluster of rows) of size 1 × c as input. It can then compute a row in the initial
decoding of size 2w. This layer requires to learn only c · 2 · w weights. All these rows can
be combined to retrieve an estimate of the input image.

Option 3 generates a thumbnail through a fully-connected layer to extract visual infor-
mation from ae similarly to option 2. This thumbnail is then gradually up-sampled and
refined through CNN layers until the size of the input image is reached. More precisely,
the network consists of three up-sample layers, each followed by a convolutional layer. The
up-sample layers use nearest neighbor interpolation to increase the input size. The first two
convolutional layers use the rectifier function (cp. equation 3.6) to introduce non-linearity.
Pooling is not applied, since no information should get lost. CNN1 uses 32 feature maps.
CNN2 uses 8 and CNN3 uses 3, respectively. Many feature maps are considered at the
beginning to allow to look at the task of information extraction from the denser image
representation from many viewpoints.

The predicted output image is compared with the input image by using the squared error
loss function (cp. equation 3.11).
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The lower part of figure 4.10 depicts the text decoder. The text decoding architecture
is reverse to the text encoding architecture. LSTMds generates a sequence of predicted
sentence embeddings s∗i . Therefore, at each time step it takes the article embedding ae
as input in addition to its previous state. Analogously, predicted sentence embeddings are
decoded into tokens w∗i via LSTMdw. The text decoding network does not allow dynamically
sized predictions, i.e. if N sentences are inputted, then N sentence embeddings will be
predicted from ae. The same restriction accounts for the length of predicted sentences.

To compare the predicted token embeddings w∗i with the input text, they have to be
translated back to words from the vocabulary. This is done by computing the cosine simi-
larity of w∗i with each embedding defined by Wwe. The maximum cosine similarity would
identify the most probable token. However, as the argmax is not differentiable, a softmax
layer followed by a cross-entropy loss is used to compare the predictions with the input text.

If optimal pretrained word embeddings could be utilized to initialize Wwe, such that it
does not has to be trained, then a direct comparison of predicted token embeddings with
input embeddings would be possible. Such a loss function may be favorable, since it would
not punish the prediction similar words as hard as the prediction distant words.

4.4. Learning to mimic Human Intuition

The task of this thesis is to estimate the informational gap between two modalities, namely
texts and images. The informational gap between two entities (i.e. a text, an image, etc.) is
small, if each of the entities is nearly fully described by the other one. On the other hand,
the informational gap is large, if the content of one entity is completely uncertain given
that the other one is known. In section 4.2 we have already shown, that there are generally
certain differences between the modalities considered in this thesis. Thus, each modality
is more suitable to present specific types of information (e.g. calendar dates in texts or
shapes in images). We concluded, that this leads to an inherently more complicated task
as, for instance, the finding of semantical alignments between two texts. Subsequently,
we presented a novel quantification scheme for rating image-text co-occurrences based on
human intuition. As we proceeded with our explanations, we recognized that the mapping
and rating of non-visual concepts requires extensive background knowledge. However, it
can be assumed that concept learning is basically a generalization task, that can be learned
unsupervised given a sufficiently sized database. In section 4.3, we presented a network
architecture that may achieve this goal due to a lower-dimensional hidden representation,
that hopefully requires the ability to generalize concepts. For instance, such a hidden
representation may describe an object by a set of features, e.g. type of object, pose, position,
shape, etc., rather than encoding a complete pixel matrix.

In this section, we want to combine the already accomplished achievements to complete
the description of an algorithm that may potentially allow a computer to mimic human
intuition when judging co-occurring image-text pairs. Therefore, annotated samples (as
described in subsection 4.2.3) are mapped onto a feature representation via the encoder
network depicted in figure 4.9, which has been initialized with the weights learned by the
autoencoder. Subsequently, a classifier network tries to deduce MI and SC labels for the
sample. Recall, that the feature representation ideally contains all the information com-
prised by the inputted entities, as the features were trained with the ability to restore this
input from them. Hence, the feature representation can be viewed as machine readable
representation of the sample, that hopefully allows an easy concept matching, even for non-
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Figure 4.11.: The classifier, which is trained on top of the encoder network depicted in figure
4.9. The network aims to predict the MI resp. SC label of an inputted sample
by reading its feature representation ae.

visual concepts. A desired analogy might be the accumulated neural activity in a human
brain when processing the sample. This is due to the fact, that after processing the whole
sample humans are able to judge the image-text relation based on their current internal
representation of the sample.

The architectural idea behind the classifier is depicted in figure 4.1b. Sample prepro-
cessing has been handled similarly as for the autoencoder. Except, that samples have been
distributed among training and test set in a stratified fashion, so the same imbalanced label
distribution should account for both sets. This has been achieved by grouping samples ac-
cording to their MI label and further subgrouping those groups according to the SC label.
These subgroups have been distributed into a training (741 samples) and test (93 samples)
set.

The encoding network is initialized via a pretrained autoencoder model. In the best case,
the encoder network itself does not have to be trained. Remember, that we justified our
small annotated dataset with the automatic learning of strong feature representations. So,
the supervised process is only needed to learn the relatively small classifier network on top
of a complex encoder network. The encoded sample ae is processed by two different units,
one generating an MI prediction and the other an SC prediction, respectively. Figure 4.11
depicts the classification network. The MI label is predicted through a fully connected layer
FCMI , that has 8 output neurons such that the neuron with the highest activation denotes
the predicted label. Recall, that MI is classified via 8 different labels according to table 4.1.
A softmax layer is stacked on top of that output map to normalize the predictions.

Semantic Correlation can either be stated as a multiclass or a regression problem (denoted
by an “or”-node in figure 4.11). If considered as a multiclass problem, the prediction
network would be the same as for MI labels using a fully-connected layer FCM

SC that has 5
output neurons, as SC is quantified using 5 labels according to table 4.2. If SC prediction
is stated as a regression problem, a fully-connected layer FCR

SC with a single output neuron
predicts the outcome. The output neuron is restricted to output values of y∗SC between -1
and 1 via a sigmoid function.

Something as vague or subjective as intuition should not be learned in a too strict regime,
that enforces the correct label disregarding the value of an incorrect prediction. In case of
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a regression problem, this can be naturally achieved by a loss function such as the squared
error loss. This loss penalizes a close prediction less severe than predictions of distant labels.
This property is preferable, since the utilized labeling expects a subjective judgment, that
shall be similar among annotators, but not necessarily equal.

In case of a multiclass problem, the choice of a loss function is not that clear. There is no
general distance measure for multiclass labels. For instance, the annotations in handwritten
digit recognition are explicit and any misclassification should be punished equally. In such a
case, a common approach to direct learning is by using the cross entropy loss, which cannot
rate the severeness of misclassifications.

For that reason, we propose another loss function, that we call Distance Aware Loss.

4.4.1. Incorporating Label Distances in Multiclass Problems

In this subsection we want to describe a loss function that can rank misclassifications to
incorporate their severeness. Therefore, a distance metric among labels has to be manually
generated in advance, as multiclass labels do not comprise information about their natural
distance. Thus, a distance metric d(yi, yj) ∈ R≥0 is required, that maps two labels yi, yj ∈ L
onto a real number that quantifies their dissimilarity. L is a set of multiclass labels (e.g. MI
or SC labels). The distance metric we have used to quantify dissimilarity among MI and
SC labels is defined in appendix C.

Having the metric d, it would be desirable to rate a misclassification y 6= y∗ by a loss

L(y, y∗) = d(y, y∗) . (4.5)

However, if the distance metric is based on hard assignments (as the ones presented in
appendix C), then the loss function in equation 4.5 is not differentiable. Hence, it cannot
serve as a loss function that guides learning via back-propagation in neural networks.

An identical description of the loss function from equation 4.5 would be

L(y, y∗) =
∑
ŷ∈L

s(y, ŷ)
∑
ŷ∗∈L

g(y∗, ŷ∗)d(ŷ, ŷ∗) , (4.6)

with s and g being gate functions

s(y, ŷ) =

{
1, if ŷ = y

0, otherwise
and g(y∗, ŷ∗) =

{
1, if y∗ = ŷ∗

0, otherwise
. (4.7)

One way to easily achieve such step functions, which have to be differentiable, is by
finding proper parameters for the sigmoid function σ. Note, that it holds that

(y1 − y2)2 =

{
≥ 1, if y1 6= y2

0, otherwise
∀y1, y2 ∈ L , (4.8)

if labels in L are encoded as natural numbers. Thus, a sigmoid function

σ(t) = 2 · 1

1 + e−αt
− 1 (4.9)

is restricted to a range of [0, 1] for positive values of t (e.g. t = (y1−y2)2). The parameter
α has to be properly chosen such that
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σ
(
(y1 − y2)2

)
=

{
0, if y1 = y2

≥ 1− ε, otherwise
. (4.10)

Therefore, α can be estimated by solving the following equation for α:

1− ε = 2
1

1 + e−α·1
− 1 . (4.11)

Subsequently, equation 4.6 can be written as a differential equation as follows

L(y, y∗) =
∑
ŷ∈L

(
1− σ

(
(y − ŷ)2

))
︸ ︷︷ ︸

s(y,ŷ)

∑
ŷ∗∈L

(
1− σ

(
(y∗ − ŷ∗)2

))
︸ ︷︷ ︸

g(y∗,ŷ∗)

d(ŷ, ŷ∗) . (4.12)

Alternatively, s can be omitted and g could be replaced by a step function that incorpo-
rates the correct label y. For instance, consider the function13

f(y, y∗, ŷ∗)) =
(
y − y

y∗
ŷ∗
)2

. (4.13)

f will only be zero, if y∗ = ŷ∗. The minimum value of f14, subject to y∗ 6= ŷ∗, can be
used to approximate an α value with the same procedure described above. This leads to a
differentiable step function that can be used as an alternative to s and g.

However, as only ∂L/∂y∗ has to be computed, s can also be replaced by a hard step
function.

The above considerations require that the predicted class y∗ is known during loss com-
putation. This is usually not the case, as it would require a non-differentiable operation
(e.g. argmax function). Typically, evidence scores for each class are computed by an output
layer. These scores can be mapped to probabilities p(ŷ∗) due to a softmax layer. This final
clue leads to a loss function, that we call Distance Aware Loss15

LDWL(y,y∗) =
∑
ŷ∈L

s(y, ŷ)
∑
ŷ∗∈L

p(ŷ∗)d(ŷ, ŷ∗) , (4.14)

where p(ŷ∗) is the ŷ∗-th element of y∗. The inner sum of equation 4.14 can be replaced
by a dot product of the softmax output y∗ and the ŷ-th column of a symmetric distance
matrix (as the ones defined in appendix C).

13Assuming all labels are represented by consecutive natural numbers starting at 1.
14Let l be 1 and m be the highest natural number in L. The minimum value of f for y∗ 6= ŷ∗ is f(l,m,m−1).

This is because both terms y and y
y∗ ŷ
∗ of f increase with increasing y, whereas the second term is scaled

by ŷ∗

y∗ . Hence, y has to be as close as possible to 0 while ŷ∗

y∗ has to be as close as possible to 1.
15Again, the outer sum can be omitted, since ∂L/∂y does not has to be computed and s is only for y = y∗

non-zero.
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5. Experiments and Evaluation

This chapter presents experimental results on a first attempt to implement the novel in-
tuition model from section 4.2 as a deep learning network. All experiments have been
conducted on the system explained in section 4.3 and 4.4 using the dataset described in
section 4.1 resp. 4.2.

Due to memory restrictions, we had to face several limitations. The maximum batch size
that could be processed is 16. Note, that all samples within a batch are padded to have the
same size as the largest sample. Hence, the largest sample among the complete dataset will
generate a batch full of samples, that will all have this maximum size. To further reduce this
maximum size, texts have been truncated during preprocessing. We have found out that a
maximum text size of 50 sentences and a maximum sentence length of 40 tokens will result
into a manageable memory utilization per batch. This restriction does not severely distort
the sample texts, as 91.15% of the articles (or 99.87% of the sections) in the SimpleWiki
dataset resp. 99.12% of the texts in the BBC News Database contain less than or equal
to 50 sentences. Furthermore, 97.97% of the sentences from the SimpleWiki dataset resp.
96.45% of the sentences from the BBC News Database contain less than or equal to 40
tokens (cp. appendix A). Hence, only a small portion of texts resp. sentences are affected
by this measurements. Yet, outliers are effectively filtered.

The most severe restriction is probably the size of feature vectors. We had to limit
their dimensionality to 300, which does require the learning of a very strong compression.
Recall, that the whole image and text must be encoded into such a dense representation.
Yan and Mikolajczyk [67] already mentioned that larger feature vectors are preferable for
representing multimodal embeddings.

The experiments have been conducted on a machine with an Intel(R) Core(TM) i7-
5930K CPU, 64 GB RAM and four NVIDIA GeForce GTX TITAN X graphic cards (having
12GB GDDR5 each). Training experiments for the autoencoder and classifier have ran on
those GPUs using the allocated training set. Training phases have been monitored by an
evaluation script running concurrently on the CPU for a constant analysis of the training
progress. For the autoencoder, evaluation has been performed on the designated validation
set. As the classifier dataset has no validation set, due to its small size, evaluation has been
performed on the test set.

All graphics in this chapter show smoothed curves1 to mitigate the effects of a poor
gradient estimate due to the small batch size that had to be used.

5.1. Evaluating the Autoencoder

The experiments reported in this section are performed on the system described in section
4.3. Before the results are presented, the experimental setup is outlined.

1Curves are smoothed using a moving average approach. Although, graphics with single curves depict the
original data transparently in the background.
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(a) Evolution of the image loss. (b) Evolution of the text loss.

Figure 5.1.: The graphics show how the loss functions that rate the image resp. text pre-
diction have decreased during the autoencoder training.

5.1.1. Experimental Setup

The complete dataset decomposes into three parts. 202, 654 samples have been generated
from the MS COCO validation set. Additionally, all 3, 361 resp. 2, 999 image-text pairs
from the BBC News Corpora resp. SimpleWiki dataset have been included. From this
randomly shuffled corpus, samples have been selected to generate a disjoint split of 190, 202
training and 6, 270 validation samples2.

Stochastic Gradient Descent (SGD) with mini-batches has been used as training algorithm
with an initial learning rate of 1.0. The learning rate is divided by 2 after a complete sweep
through the training set has been accomplished.

Option 3 has been used as image decoder architecture. Additionally, image reconsider-
ation subsequently to text processing was enabled (cp. section 4.3). The image encoding
network was initialized with weights of a pretrained InceptionV3 model. Initial word em-
bedding estimates have been taken from a Word2Vec implementation that was trained
among the whole text contained in training, validation and test set.

5.1.2. System Performance

As a result of the high memory requirements of the implemented architecture and the
resulting low dimensional internal feature representations, the learned compression was
not as applicable as desired. The loss evolution during training is depicted in figure 5.1.
Note, that all graphics and metrics presented in this chapter have been computed on a
validation/test set. As one can see, the autoencoder architecture is capable of learning
properties from the input distribution. Recall, that the output is completely decoupled
from the input except of a dense 300-dimensional feature representation.

The average image loss (averaged over the whole validation set) has decreased by 25.82%,
whereas the average text loss only decreased by 0.45%. However, as the absolute loss values
are not comparable, we additionally provide perplexity measures. Intuitively, perplexity
measures the complexity of a model (lower is better). It is computed as the exponentiation
of the model its entropy.

The image perplexity has decreased by 6.61% and the text perplexity by 7.42%, respec-
tively. Hence, it can be concluded that both models (image and text decoding) are similarly

2The remaining samples are allocated in an unused test set.
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(a) Input image of the trained autoencoder. (b) Predicted output image.

Figure 5.2.: This figure illuminates what the autoencoder was able to learn in spite of an
extremely dense hidden feature representation. Note, the input image had to be
blurred due to its unknown copyright status. The original input image depicts
a skier in the midst of a snowscape.

well suited to accomplish their task. That learning actually has been taken place can be
seen in figure 5.2. The figure depicts the same image before and after it has been processed
by the autoencoder. The system correctly detects that the bulk of content is gathered in
the center of the graphic. A similar outcome could be observed for most images, i.e. promi-
nent contours could be recognized or global color distributions were reflected in the output.
Therefore, it can be assumed that the autoencoder architecture is suited for feature learning
and especially for conceptualization. Yet, the experimental results are by far not satisfac-
tory and call for further architectural improvements in order to improve computational
efficiency.

5.2. Evaluating the Classifier

The experiments reported in this section are performed on the system described in section
4.4.

Based on the poorly encoded samples delivered by the just examined autoencoder model
and the strong coupling of classifier and autoencoder, the intuition estimation procedure
derived in section 4.2 has to be slightly modified with respect to feature learning. The
original approach relied on an encoding that extensively represents the original input but
comprises a simplified characterization of depicted concepts and their alignment, such that
the classifier only has to learn a rating of those alignments in a supervised process. This
goal cannot be fully achieved with the given compression model learned by the autoencoder.
Therefore, we decided to finetune the encoder model during training of the classifier, such
that the classifier can identify and extract the properties from the input distribution neces-
sary to judge inter-modal relations. Thus, during classifier training, the learnable weights
of the complete encoder network (cp. figure 4.9) and the subsequent classifier network (cp.
figure 4.11) are modified by back-propagation. Hence, the feature extraction of the classifier
is not fixed as originally proposed. In spite of the learning that has occurred and will be pre-
sented throughout the section, we want to mention that this learning scheme is unqualified
to solve the initial task. Such a framework would require a massive amount of annotated
data to noticeably improve the baseline laid by our experiments. This is due to the inherent
complexity of the actual problem, i.e. the ability to generalize and map non-visual concepts.
Moreover, we believe that such a system would underperform compared to the architecture
proposed in chapter 4, even if enough annotated training data would be available. Two
reasons might exclude a fully supervised scheme from solving the examined task. Firstly, a
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system concentrating solely on the detection of features that do improve the current label
prediction based on back-propagation, might not manage to find a global minimum, that
requires the generalization of concepts as assumed by our explanations in chapter 4. This is
due to the fact, that there is no necessity for the system to learn a complete representation
of the semantic content. Another reason, that might restrict a fully supervised scheme from
proper feature learning, is the noisy nature of the annotations themselves. This is because
of the expected label variance among different annotators as stated in section 4.2.3.1.

5.2.1. Experimental Setup

As outlined in subsection 4.2.3, the dataset consists of 834 samples (100 from the MS
COCO dataset, 205 from the BBC News Corpora and 529 from the SimpleWiki dataset).
The samples have been distributed onto a training set consisting of 741 samples and a test
set consisting of 93 samples using stratified sampling.

Similar to above, the model has been trained using SGD with mini-batches with an initial
learning rate of 1.0, that has halved as soon as a complete batch of all training samples has
been processed.

The classifier models, used to conduct experiments, has been initialized with the weights
learned in the autoencoder model presented in the previous section. Although, the learned
feature extraction algorithm does not fully encode the input, some general properties are
identified by the model.

We will present result for 4 different classifier settings, which are described by the following
listing.

• ECEMC : The task of predicting Semantic Correlation is stated as a multiclass problem.
MI and SC predictions are rated by a cross-entropy loss function.

• EDAMC : The task of predicting Semantic Correlation is stated as a multiclass problem.
MI and SC predictions are rated by the Distance Aware Loss function described in
section 4.4.1.

• ECER : The task of predicting Semantic Correlation is stated as a regression problem.
MI and SC predictions are rated by a cross-entropy loss function.

• EDAR : The task of predicting Semantic Correlation is stated as a regression problem.
MI and SC predictions are rated by the Distance Aware Loss function described in
section 4.4.1.

A pre-superscript P will denote experiments that have been trained on samples containing
only photographs (e.g. PECEMC). Thus, the dataset used in this experiments comprises only
samples labeled with the image type Photograph (100 from the MS COCO dataset, 200
from the BBC News Corpora and 397 from the SimpleWiki dataset).

Systems that have been used for comparison are:

• EAESVM: A multiclass SVM implementation [13], trained with article embeddings ae
as features that have been generated by the trained autoencoder model from section
5.13.

3A suitable value for the weight-decay hyperparameter, that trades-off noise incorporation, has been found
via grid search.
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• ECSVM: A multiclass SVM implementation [13], trained with article embeddings ae as
features that have been generated by the trained classifier model ECEMC , as it shows an
acceptable performance on both measures.

• EMF
RAND: RAND denotes the calculated accuracy that would be reached by a random

classifier. MF denotes a random classifier that consistently predicts the most frequent
label. Hence, such a classifier exploits the strong label imbalance to achieve high
accuracy values.

• EUDRAND: RAND denotes the calculated accuracy that would be reached by a random
classifier. UD denotes a random classifier that randomly outputs labels according to a
uniform distribution. The distribution of target labels from input samples equals the
label distribution L that can be derived from the label frequencies from the classifier
dataset.

• ELDRAND: RAND denotes the calculated accuracy that would be reached by a random
classifier. LD denotes a random classifier that randomly outputs labels according to
the label distribution L. Target labels from input samples are drawn from the same
label distribution L.

5.2.2. System Performance

Experiment Accuracy MI Accuracy SC

ECEMC 0.6289 0.6875

EDAMC 0.5391 0.1758

ECER 0.6328 –

EDAR 0.5430 –
PECEMC 0.6172 0.6953
PEDAMC 0.5352 0.6953
PECER 0.4961 –
PEDAR 0.2305 –

EAESVM 0.6125 0.6500

ECSVM 0.5375 0.7250

EMF
RAND 0.5593 0.6563

EUDRAND 0.1250 0.2000

ELDRAND 0.3693 0.4772

Table 5.1.: The overall accuracy of predicting the correct MI resp. SC label that has been
achieved in our experiments.

The accuracy achieved in all the previously described experiments is depicted in table
5.1.

A classifier that would learn to predict a single label such as EMF
RAND represents the most

severe case, as the complete entropy of the input distribution has been vanished from the
predictions. Therefore, we additionally provide F-measures for the conducted experiments
to better account for systems achieving high scores by solely exploiting label imbalances. As
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(a) Evolution of the weighted F1-Score when
predicting MI labels.

(b) Evolution of the weighted F1-Score when
predicting SC labels.

Figure 5.3.: The graphics show aggregated F-measures (weighted average to account for
label imbalances), that have been recorded during training of ECEMC for MI resp.
SC labels.

Experiment Weighted F1 MI Micro F1 MI Macro F1 MI

ECEMC 0.5540 0.6289 0.2260

EDAMC 0.3776 0.5391 0.0876

ECER 0.5951 0.6328 0.2536

EDAR 0.3821 0.5430 0.0880
PECEMC 0.5291 0.6172 0.2327
PEDAMC 0.3731 0.5352 0.0872
PECER 0.4375 0.4961 0.1510
PEDAR 0.1571 0.2305 0.1250

EAESVM 0.4862 0.6125 0.1959

ECSVM 0.4939 0.5375 0.1913

Table 5.2.: Several multiclass F-measures for MI predictions, that have been recorded for
the conducted experiments

we are dealing with multiclass problems, a single F1-Score, that harmonizes precision and
recall of label predictions, is not applicable to present a global view on the performance of
the system. Therefore, table 5.2 and 5.3 provides a list of three different multiclass metrics,
that aim to evaluate multiclass predictions with distinct ways of aggregating binary F1-
scores. Weighted and Macro F1-Score are computed as the harmonic mean of the averaged
individual label estimates for recall and precision. In addition, the Weighted F1-Score takes
the biased label distribution into account by computing a weighted average. The Micro-F1
score is computed identically to the binary version, except that the underlying frequency
estimates (true positives, false positives and false negatives) are accumulated among all
labels.

Additionally, figure 5.3 shows the evolution of the Weighted F1-Score for experiment
ECEMC .

Most notably, the depicted results reveal that the Distance Aware Loss is always leading
to result inferior to those classifiers using Cross-Entropy loss. We still struggle to find a
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Experiment Weighted F1 SC Micro F1 SC Macro F1 SC

ECEMC 0.6081 0.6875 0.2613

EDAMC 0.0526 0.1758 0.0598
PECEMC 0.6337 0.6953 0.2886
PEDAMC 0.0504 0.5352 0.1719

EAESVM 0.6500 0.5326 0.2120

ECSVM 0.7250 0.6841 0.3513

Table 5.3.: Several multiclass F-measures for SC predictions, that have been recorded for
the conducted experiments

0 1 2 3 4 5 6 7

ECEMC 0.0000 0.0000 0.0000 0.0000 0.7462 0.2564 0.8056 0.0000

ECER 0.0000 0.0000 0.0000 0.0000 0.7297 0.5047 0.7941 0.0000

EAESVM 0.0000 0.0000 0.0000 0.0000 0.7300 0.0000 0.8400 0.0000

ECSVM 0.0000 0.0000 0.0000 0.0000 0.6700 0.2800 0.5900 0.0000

# Samples 3 0 1 4 43 18 10 1

Table 5.4.: F1-Score of each individual MI label. The last row contains the number of
representatives of each label in the test set.

explanation for that behavior. It might be that the used distance matrices from appendix C
do not differentiate distinct labels sufficiently, leading to a too vaguely stated classification
problem.

Strangely, Distance Aware Loss applied on MI predictions influences the performance
of an SC classifier, that considers the prediction as regression problem rated via squared
loss. For instance, when using Cross-Entropy loss for the MI classifier, the mean squared
error on SC predictions decreases by 37.38% during training. On the other hand, if MI
predictions are rated by the Distance Aware Loss, an actual increase of the squared error
around 7.66% can be measured. The reasons for this behavior should be analyzed in future
work by conducting further experiments with more carefully engineered distance metrics.
Experiments using Distance Aware Loss are neglected by further considerations.

As the multiclass problems comprise only a few labels, it is feasible to consider each label
separately. Table 5.4 and 5.5 present the F1-scores that have been reached for each label
individually.

The tables reveal that the major cause of the poor classification results lay in the sparsity
of certain labels. Future work should address this issue by incorporating suitable multimodal
documents from datasets that either have a high amount of shared information or a negative
semantic correlation.

Most surprisingly, the classifier is capable, in spite of poor initial encodings, of learning
features necessary to judge Semantic Correlation. This effect is visible when comparing
the results of EAESVM and ECSVM. Recall, that these experiments differ in the features they
use. EAESVM uses the feature vectors from the initial classifier network and ECSVM uses the
feature vectors from the final classifier network (after training). Such improvements are not
obviously visible when comparing their MI prediction results. This might be due to the
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-1.0 -0.5 0.0 0.5 1.0

ECEMC 0.0000 0.0000 0.4691 0.0000 0.8373

EAESVM 0.0000 0.0000 0.2700 0.0000 0.7900

ECSVM 0.0000 0.0000 0.5900 0.2900 0.8800

# Samples 1 3 11 15 50

Table 5.5.: F1-Score of each individual SC label. The last row contains the number of
representatives of each label in the test set.

fact, that the feature vectors do not properly encode concepts appearing in the input, thus
it is not possible to judge their alignment.

Moreover, the results show that high Mutual Information, in particular label 6, is easier
to detect. Note, that all samples of label 6 are actually taken from image caption datasets
and are therefore biased towards high visual concepts. Hence, it can be assumed that high
visualness is much easier to learn, which matches our expectation.

In conclusion, one can state that neither the dataset nor the concrete architectural imple-
mentation are well suited to tackle the problem of mimicking human intuition when judging
the relation of multimodal documents. However, all experiments have shown that the gen-
eral expectations of the approach described in chapter 4 can be met, except for the loss
function introduced in section 4.4.1. Section 5.1 has shown that an autoencoder is capable
of encoding concepts from the input in an extremely dense feature vector in a fully unsu-
pervised training regime. It can be assumed that a more expressive hidden representation
will lead to the ability of encoding further concepts. The results presented in this section
have illuminated that random classifiers can be outperformed by a deep neural network,
setting an initial baseline, that should be easily surpassed by a more carefully engineered
system (e.g. by incorporating some of the suggestions from chapter 7).
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6. Applications

A variety of direct application can be derived from a system that correctly predicts Semantic
Correlation and Mutual Information. A few of them will be listed in this chapter to illustrate
the potential benefits arising from a working system and to motivate future research in this
area.

To highlight the quality of learned feature representations, these vectors may be used
to estimate the similarity between encoded input samples. For instance, an image-text
retrieval task can be naturally formulated as the vector similarity of their embeddings.
More precisely, the encoder network in figure 4.9 may be used to embed a sample consisting
solely of text and one that only contains an image. The similarity between the resulting
article embeddings does rate their semantic similarity, as the embeddings where generated
with the goal to encode the whole input content. This is the same analogy that has been
utilized by word vectors, since a proper mathematical representation of an abstract concept
can easily be used to compute semantic distances.

However, as highlighted in chapter 4, similarity in the content of samples or entities does
not necessarily imply a strong semantic correlation. Such entities may even be negatively
correlated (cp. example 4.2). As subtle details can heavily change the correlation estimate,
a learned vector encoding, that can significantly increase vectorial distances for certain
changes but maintaining a similar position for others, is unlikely to be learned by any
reasonable sized dataset. Therefore, a reliable image-text retrieval system does require
further intervention, i.e. an algorithm that rates Semantic Correlation just as we proposed.

In general, an MI – SC estimator can increase the quality of search results. For the sake
of illustration, we assume an MI – SC system that has been trained on several modality
pairs (e.g. text-text, image-text, audio-text, . . . ) throughout the chapter. A user that
uses an entity (e.g. an image or a text) as search input, might have different expectations
regarding the outcome. One might look for documents containing the same information
(i.e. high MI and SC) to retrieve a document that is possibly easier to understand or to
perceive. Another possibility would be to gather as much information as possible about a
certain topic (i.e. low MI but high SC, thus documents that complement one another).

New tasks in the field of machine translation may arise, but in terms of translating from
one modality to another. For instance, co-occurring texts and information graphics could
be automatically gathered to build an enormous dataset of high MI and high SC pairs 1.
Usually, such pairs would have to be manually rated or generated by humans. Similar, to
the training of language models in machine translation, neural networks that translate one
modality to another could be trained with such a dataset.

The same accounts for a field that has been heavily invested recently. People, who are
visually impaired, could immensely benefit from a system that automatically describes a
scene. Current algorithms rely on training data, that was human annotated and therefore
only contains a couple of hundred thousand samples. This is not sufficient to help one
through everyday situations. Collecting data from the Internet is hard, because neither

1Note, that no such dataset for information graphics exists currently.
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the surrounding text nor the caption describes what is visually obvious most of the time.
Though, as figure 2.1 depicts, current captioning algorithms already show outstanding re-
sults. It can be assumed that such systems achieve even better outcomes when provided with
more data. As human annotation is a time consuming and expensive process, an automatic
dataset generation would be preferable. As a simplistic image-caption retrieval from the In-
ternet would not produce the desired outcome, a more sophisticated retrieval algorithm has
to be designed to filter for captions that describe visual obvious content2. Hence, similarly
to the retrieval of information graphics above, a Web crawler, that retrieves image-caption
pairs of high MI and high SC could be used to generate more prosperous datasets.

Furthermore, an MI – SC estimator could be used to rank image-captioning results.
As stated in chapter 2, evaluating the quality of automatically generated image captions
without human interference is still an unsolved task. Hence, an MI – SC estimator may
allow to design a fully unsupervised captioning framework, that learns from automatically
gathered samples and terminates when proper outcomes are produced.

A further application would be to extract relevant passages in a text. For instance, almost
all images that had been annotated in the course of this work had no direct references in co-
occurring text (i.e. a stated image label). Yet, some texts contained passages that exclusively
described image content (the relevant text snippets that have been extracted; cp. section
4.2). Identifying those sections could again be accomplished by rating image-sentence pairs
according to their SC and MI estimate and extracting those with sufficiently high values.

This application could be particularly interesting in scientific publications, as such an
algorithm could automatically highlight and assemble relevant text passages that describe
a graphical representation. Once more, we want to highlight potential subsequent appli-
cations, that would be rendered possible as a result of those direct uses. As it is still
computationally infeasible to train networks that generalize well on too noisy data while
aiming to solve complex tasks (such as image captioning), large datasets of high accuracy
and quality are required. Such a dataset can then be used to automatically generate textual
descriptions of graphics in scientific publications similarly to recent captioning algorithms.

There is certainly a variety of unmentioned fields that would benefit from a reliable MI
– SC estimator, as human judgment and intuition does prevent many systems from being
able to operate fully automated. It is yet clear that the listed tasks can only be adequately
solved with a system that better judges image-text relations. A reliably operating MI – SC
estimator, as suggested in chapter 4, would be perfectly suited to provide the missing piece
required for all of the above stated applications.

2It might be sufficient to automatically crawl image captions, that contain a relatively high number of high
visual words. An algorithm to rate the visualness of words can be taken from [68]. However, a dataset
retrieved via such a heuristic may still be too noisy.
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7. Conclusion

This thesis has presented a novel approach to rate the relation of co-occurring image-text
pairs. Recent approaches relied on the assumptions that co-occurring pairs have a high
semantic correlation. We illuminated that this is not the case, their natural combined
usage is rather complicated and highly dependent on the source and expected preexisting
contextual knowledge. We showed that it is essential to acknowledge and handle the usage
variations among co-occurring modalities in order to automatically generate task-specific
datasets, necessary to fully automate a wide variety of current and future tasks located on
the edge of NLP and CV, that will ease and improve everyday live.

More precisely, our approach relied on the assumption that extensive background knowl-
edge is required in order to comprehend even marginal alignments between entities. There-
fore, we gathered a new dataset from an online encyclopedia, because they often comprise
knowledge about the world and its entities in a compact and nonredundant fashion. In
combination with other datasets, encyclopedia articles have been utilized to train an un-
supervised system, that learns a compression of the provided samples. The learning of a
compression enforces the system to generalize concepts and to map related concepts from
both modalities onto the same representation. Furthermore, we proposed a novel anno-
tation scheme, which allows human judges to easily rate a multimodal relation based on
two measurements. One measures the amount of shared information in order to estimate
whether entities do complement one another. The more subtle measurement of Seman-
tic Correlation evaluates the overall likelihood of co-occurrence, that requires to infer the
meaning of all concepts appearing in an entity and to identify and rank mutual alignments
between concepts. We have generated a human-annotated dataset based on those measure-
ments, containing over 700 image-text pairs from a variety of distinct sources in order to
ensure a sufficient variance of relation types. In addition, we implemented a deep learning
architecture to tackle both problems, learning extensive background knowledge and judg-
ing intermodal relations. An autoencoder architecture based on recently developed image
feature extraction models and a hierarchical text processing recurrent neural network, to
allow learning of long-term-dependencies in long texts, has been proposed to generate a
dense embedding space for concept encoding. A rating system that utilizes the learned
encodings, and therewith the simplification of complex, highly nonvisual concepts, has been
trained with the gathered annotations in order to quantify the relation of a text enclosed
with an image. Subsequently, we have demonstrated that the system in principal may work
as expected and we have set an initial baseline above random classifications for future work
to improve on.

However, as the evaluation in chapter 5 has shown, the problem faced in this thesis
is inherently more complex than recently encountered tasks, that have had extraordinary
success using deep learning methods. In order to approach the problem successfully with the
computational power currently available, a more carefully designed dataset and network are
required. In account of this, we want to propose some improvements that can be integrated
to yield to a better outcome.

The dataset for the autoencoder is not expressible enough yet to keep up with human
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conceptualization skills. A larger news corpora, as presented in 4.1.2, might be more suitable
to learn a sufficient amount of background knowledge regarding ongoing events, affairs and
stories. Furthermore, the SimpleWiki crawler should be restarted to gather a complete
encyclopedia copy. Otherwise, an autoencoder may only be able to learn an incomplete
view on the world. Additionally, colloquial language can be included in the database to
allow a wider range of applications. However, all these dataset enrichments do increase the
required computational power and may not be necessary to achieve modest results.

On the other hand, improvements of the annotated dataset are desperately needed as
the sparsity of certain labels have considerably worsen the overall results of our system in
section 5.2. First of all, a system to distinguish image types can be invented in order to
retrieve rare types such as charts. This could be done unsupervised by a clustering approach
on a dataset having an approximately balanced type distribution or by providing a small
annotated dataset1. A balanced dataset with respect to image types could illuminate the
usage patterns of different graphical representations and therewith lead to a broader scope
of used labels (e.g. it can be assumed that charts are typically well described in co-occurring
text in contrast to photographs).

As addressed in section 4.2.3.1, it may be wise to further simplify the MI annotation
scheme in order to better capture the actual distribution of relation types and to obtain an
ordinal labeling. This can solve the data sparsity among labels capturing high amounts of
shared information as captioning dataset could fill this gap.

To overcome the sparsity among negative SC labels, it may be necessary to assemble
pairs from handpicked images and texts. For instance, a text that explains the physique of
a horse and is enclosed with the image of a dog is a perfect example for negative semantic
correlation. Though, negatively correlated samples are unlikely to occur in natural settings
and therefore have to be artificially generated.

Additionally, the system architecture has to be tuned to train the underlying networks
more effectively. Especially the autoencoder structure has to be reviewed to allow larger
feature embeddings. For this reason, a system should be designed that allows varying
embedding sizes for word, sentence, image and article embeddings. This is the most obvious
architecture as words generally do not contain as much information as complete sentences
or texts. This can be achieved by either one of two architectural modifications of the
autoencoder, which has been proposed in section 4.3. Firstly, one may increase the number
of output neurons in LSTM layers generating sentence or article embeddings. However,
as it can be difficult to implement a model that holds only the output of the last element
for each sequence in memory for a batch containing variable-sized sequences, a simpler
hierarchical expansion might be more suitable. Therefore, additional LSTM layers between
word-sentence and sentence-article embedding generation are inserted. For instance, a layer
that takes a constant window of four word embeddings to generate inputs for an LSTM that
creates the final sentence embedding, does increase the intermediate embedding size by a
factor of 4. Such naive improvements might allow to learn the encoding of a lot more
concepts during training and leads therewith to more expressive feature vectors.

Future work should also examine the influence of more complex loss functions to better
rate the similarity of the predicted and true outcome. For instance, recently developed ob-
ject, object-attribute and spatial-relation detectors can be utilized additionally to quantify
the similarity of input and output images. For text similarity, embedding distances might be

1A small dataset should be sufficient as it might be not that complicated to distinguish image types.
In addition, a noisy result is no problem when the retrieved documents are used for further human
annotation.
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regarded similar to recent paraphrase detection approaches. However, such enhancements
may also impair the system performance as the learning problem could be too loosely stated
analogous to the impact of a Distance Aware Loss (cp. section 4.4.1 and 5.2).

Heavy memory consumption in our autoencoder architecture is caused by the back-
translation of word embeddings to tokens in the vocabulary as this step requires to compute
a matrix that contains a similarity score for each token in a text compared with each token
in the vocabulary. Hence, a reduction of the vocabulary size without a loss in expressiveness
is desirable. In addition, this would extensively reduce the number of weights to be learned,
as the matrix of all word embeddings shrinks. To achieve this, we want to suggest a more
natural way of encoding word embeddings. The method is an hierarchical word encoding,
where the encoding of words with the same stem is related. Therefore, words are inputted
as pairs consisting of the word stem and the original word ending. An embedding matrix
would only be learned for word stems, as endings usually modify those stems similarly.
Hence, a final word embedding is retrieved via a fully connected layer that modifies a word
embedding, such that the initial ending is taken into consideration.

In order to take artificial intelligence on the next stage, the more ambiguous and subjective
facets of human intelligence, such as their intuition and judgment, have to be considered
and investigated. This thesis is a first attempt to enter a field of exciting new tasks and
possibilities.

Almost all presented formulations can be transferred to other constellations of modalities
(e.g. text and video). We hope that future work, inspired by the methodology developed in
this work, will include additional modalities and accomplish a prediction performance that
allows to tackle the applications incentivized by chapter 6 or those that haven’t even been
imagined yet.
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A. Specifics and Characteristics of the
Datasets

The materials supplied in this appendix shall give some auxiliary information about the
datasets described in section 4.1, especially the SimpleWiki dataset, that was newly created.
Figures A.1 and A.2 give an intuition for the general sentence/text complexity of each
individual dataset. Section A.1 explains the JSON structure of a single article from the
SimpleWiki dataset.

A.1. Article structure in the SimpleWiki dataset

The overall structure of a single article is depicted in the below JSON fragment A.1. The
following list gives a brief description of each property.

1 {
2 "references":[ ... ],

3 "categories":[ ... ],

4 "sections":[ ... ],

5 "summary":"...",

6 "images":[ ... ],

7 "id":1,

8 "keyphrases":[ ... ],

9 "title":"...",

10 "url":"https:// simple.wikipedia.org/wiki?curid=1"

11 }

Fragment A.1: JSON object that defines a SimpleWiki article

• references: A list of all external references that have been cited in the article.

• categories: A list of categories that have been assigned to the article.

• sections: A list of section objects as defined in JSON fragment A.2.

• summary: The summary of the article.

• images: A list of image objects as defined in JSON fragment A.3.

• id: The unique ID of the article.

• keyphrases: A list of keyphrases. These are all internal links of article, as they are
assumed to be valid keywords/phrases.

• title: The title of the article.
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(a) The sentence length distribution of the
captions belonging to the validation set
of the MS COCO dataset.

(b) The sentence length distribution of sen-
tences drawn from article texts in the
BBC News database. Headings are con-
sidered as sentences in this overview.

(c) The sentence length distribution for sen-
tences in an article from the SimpleWiki
dataset. Headings are considered as sen-
tences in this overview.

Figure A.1.: The histograms show the more complicated sentence structure of news or en-
cyclopedia articles compared to artificially generated image captions.

70



(a) Shows the distribution of the number of
sentences in a news article from the BBC
News database.

(b) Shows the distribution of the number of
sentences in a single section or an arti-
cle summary for articles from the Sim-
pleWiki dataset.

(c) Shows the distribution of the number of
sentences in a complete article from the
SimpleWiki dataset.

Figure A.2.: The histograms show that news articles have a minimum length, whereas en-
cyclopedia articles can have any length.
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• url: The URL of the article.

The structure of each section resp. subsection is defined by the below JSON fragment.

1 {
2 "images":[ ... ],

3 "lists":[ [ ... ], ... ],

4 "subsections":[ ... ],

5 "title":"...",

6 "keyphrases":[ ... ],

7 "text":"..."

8 }

Fragment A.2: JSON object that defines a SimpleWiki section

The properties of a section are defined as follows:

• images: A list of image objects as defined in JSON fragment A.3.

• lists: A section may contain several lists. Each list is a collection of list items.

• subsections: A list of section objects as defined in JSON fragment A.2.

• title: The heading of the section.

• keyphrases: Internal links, that occur within the section (ignoring subsections).

• text: The actual text of the section.

1 {
2 "filename":"/wiki/File:filename.jpg",

3 "origformat":"jpg",

4 "metapath":"c/c2/filename.json",

5 "keyphrases":[ ... ],

6 "imgpath":"c/c2/filename.jpg",

7 "caption":""

8 }

Fragment A.3: JSON object that defines a SimpleWiki image

The skeleton of an image object is depicted in fragment A.3. Some of its properties are
optional, as images are not necessarily downloaded. For instance, an image that belongs to
a section, that does not contain any text, is omitted. Its properties are defined as follows:

• filename: The filename of the image.

• origformat: (optional) The original format of the image, before it was converted into
JPEG format.

• metapath: (optional) The relative path to a JSON file containing metadata about
the image (e.g. license information).

• keyphrases: A list of keyphrases (internal links) appearing in the caption.

• imgpath: (optional) The relative path to the preprocessed image.

• caption: The image caption.
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B. Label Distributions among different
Image Types

Different image types (e.g. charts or photographs) are intentionally used to adequately
present the desired information. The annotation statistics presented in this appendix should
enrich the explanations from subsection 4.2.3 by considering individual image types. As the
image type distribution among the two annotated datasets is extremely biased, we only
consider those where enough representatives appeared to allow one to draw meaningful
conclusions, namely photographs for both datasets and drawings for the SimpleWiki dataset.

Label 0 1 2 3 4 5 6 7

Total 17 – 1 6 85 91 – –
Percentage 8.5 – 0.5 3.0 42.5 45.5 – –

(a) Distribution of MI labels.

Label -1.0 -0.5 0.0 0.5 1.0

Total 7 28 82 67 16
Percentage 3.5 14.0 41.0 33.5 8.0

(b) Distribution of SC labels.

Table B.1.: Label distribution of the annotated samples from the BBC News Database
dataset for image type photograph.

Table B.1 shows the distribution of labels among photos in the BBC News Database. On
average, the pairs have a semantic correlation of 0.14 (and a mean of 0.0). Among these
200 photographs only 8 pairs have been assigned with relevant text snippets.

In addition, table B.2 shows the distribution of labels among photos in the SimpleWiki
dataset. They have an average semantic correlation of 0.88 (and a mean of 1.0). 117 out of
397 contain relevant text snippets.

Furthermore, table B.3 reveals the distribution among drawings appearing in the Sim-

Label 0 1 2 3 4 5 6 7

Total 22 – 5 28 292 48 – 2
Percentage 5.54 – 1.26 7.05 73.55 12.09 – 0.5

(a) Distribution of MI labels.

Label -1.0 -0.5 0.0 0.5 1.0

Total – 3 16 56 322
Percentage – 0.76 4.03 14.11 81.11

(b) Distribution of SC labels.

Table B.2.: Label distribution of the annotated samples from the SimpleWiki dataset for
image type photograph.
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Label 0 1 2 3 4 5 6 7

Total 6 – 1 10 57 14 – 3
Percentage 6.59 – 1.1 10.99 62.64 15.38 – 3.3

(a) Distribution of MI labels.

Label -1.0 -0.5 0.0 0.5 1.0

Total – – 9 10 72
Percentage – – 9.89 10.99 79.12

(b) Distribution of SC labels.

Table B.3.: Label distribution of the annotated samples from the SimpleWiki dataset for
image type drawing.

pleWiki dataset. 33 out of 91 drawings are associated with relevant text snippets. These
drawings have an average SC value of 0.85 (mean: 1.0). It can be seen that drawing have
a similar label distribution as photographs. Though, we believe that a further distinction
between artistic and technical drawings would lead to less resp. more shared information,
such that it can be seen solely from such distributions, that there are certain differences
between image types.
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C. The defined Distance Metrics on MI and
SC Labels

This appendix provides the distance metrics that have been used to penalize misclassifica-
tions according to the loss function described in subsection 4.4.1.

MI labels are structured according to equation C.1.

DMI =



0 1 2 3 4 5 6 7

0 0.0 1.0 0.8 0.6 0.4 0.2 0.5 0.5
1 1.0 0.0 0.2 0.4 0.6 0.8 0.5 0.5
2 0.8 0.2 0.0 0.2 0.4 0.6 0.8 0.8
3 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.6
4 0.4 0.6 0.4 0.2 0.0 0.2 0.4 0.4
5 0.2 0.8 0.6 0.4 0.2 0.0 0.2 0.2
6 0.5 0.5 0.8 0.6 0.4 0.2 0.0 1.0
7 0.5 0.5 0.8 0.6 0.4 0.2 1.0 0.0


(C.1)

As it has been already mentioned in subsection 4.2.3.1, MI labels 0 to 5 have a natural
inclusion structure:

0 < 5 < 4 < 3 < 2 < 1 .

This structure is reflected by the distance metric. The rare cases 6 and 7 allow a wide
range of possible samples, so the defined distance can only be a coarse estimate.

The distance between pairs of SC labels is defined by equation C.2.

DSC =



−1.0 −0, 5 0.0 0.5 1.0

−1.0 0.0 0.0 1.0 1.0 1.0
−0.5 0.0 0.0 0.0 1.0 1.0

0.0 1.0 0.0 0.0 0.0 1.0
0.5 1.0 1.0 0.0 0.0 0.0
1.0 1.0 1.0 1.0 0.0 0.0

 (C.2)

Semantic Correlation is hard to quantify, such that it has to be presumed, that there is a
substantial variance among annotators. Though, the general direction should be identical.
For this reason, equation C.2 does not penalize close misclassifications.
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