

# Are Bayesian neural networks intrinsically good at out-of-distribution detection?

UDL Workshop 2021

Christian Henning\*, Francesco D'Angelo\*, Benjamin F. Grewe



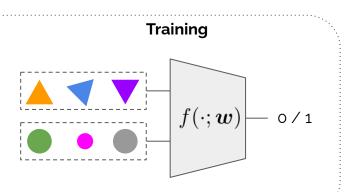
Francesco D'Angeld

#### Out-of-distribution (OOD) detection

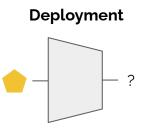
We consider a supervised learning problem:  $\mathcal{D} \overset{i.i.d.}{\sim} p(\boldsymbol{x}, \boldsymbol{y}) = p(\boldsymbol{x})p(\boldsymbol{y} \mid \boldsymbol{x})$ 

where the goal is to learn the parameters of a neural network  $f(\cdot; m{w})$  such that, e.g.:

$$\mathbb{E}_{p(\boldsymbol{x})} \Big[ \mathsf{KL} \Big( p(\boldsymbol{y} \mid \boldsymbol{x}) \Big| \Big| p \Big( \boldsymbol{y} \mid f(\cdot; \boldsymbol{w}) \Big) \Big) \Big] \approx 0$$
Data-generating process Model



Intuitively, an **OOD point** is an input that is unfamiliar (given the training data), for which we should abstain from making predictions with the learned model.



#### OOD detection via Bayesian Neural Networks (BNN)

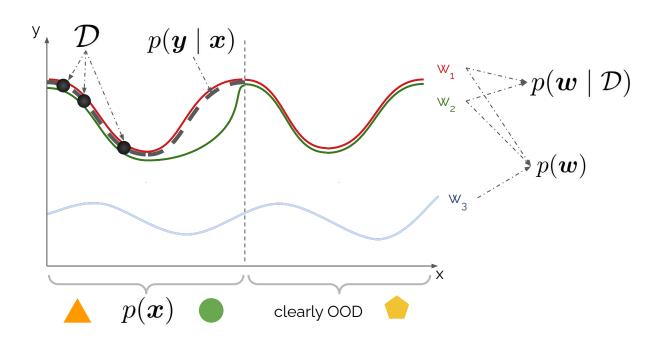
Given a likelihood defined via a neural network and a chosen weight prior p(w) BNNs utilize Bayesian statistics to maintain a posterior  $p(w \mid \mathcal{D})$ 

This allows them to capture both **aleatoric** (data-intrinsic) and **epistemic** (limited data availability) uncertainty.

**Question:** Can we use a BNN's uncertainty to approach the OOD problem?

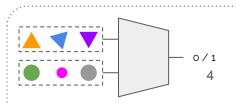
#### The two ingredients for OOD detection via BNNs

1st ingredient: epistemic uncertainty



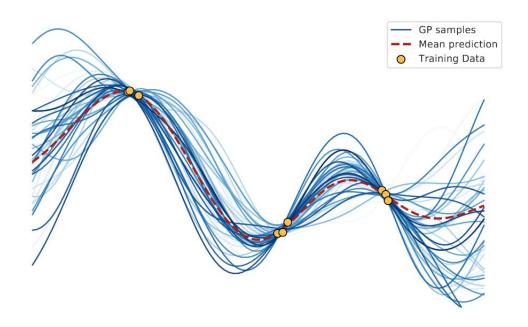
In this toy hypothesis class

 epistemic uncertainty on OOD data vanishes after seeing the data



#### The two ingredients for OOD detection via BNNs

#### 2nd ingredient: rich hypothesis space



- Neural networks can be universal function approximators
- → Can we model a distribution over functions that agree on the seen data but disagree everywhere else?
- The chosen architecture and weight prior determine the induced prior in function space<sup>1</sup>
- → We don't know how to choose an architecture to allow powerful function approximation
- → We don't know how much the chosen weight prior restricts the function approximation capabilities of the given architecture

#### Are BNNs good at OOD detection?

It seems widely assumed that proper Bayesian inference with neural networks leads to a model that "knows what it doesn't know".

→ For instance, OOD detection is a common benchmark to validate new approximate inference methods, implying that the true posterior is good at OOD

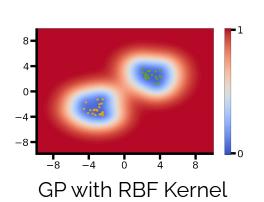
A formal understanding under which conditions BNNs are good at OOD detection is lacking to the best of our knowledge!

→ However, such theoretical basis would be desirable for safety-critical applications

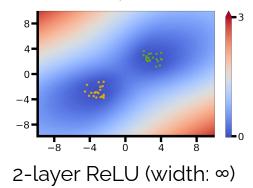
Our work aims to create awareness about this problem!

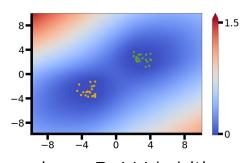
#### Our approach to illustrate the problem

- For certain weight priors, neural networks converge to Gaussian processes (GP)
  in the infinite-width limit<sup>2</sup>
- Bayesian inference can be exact in this limit, which allows us to study the OOD capabilities of the true posterior
- We can use HMC on finite-width networks to verify whether the OOD behavior is consistent with the infinite-width case



#### Plots show epistemic uncertainty

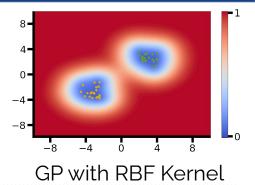




2-layer ReLU (width: 20)

## Why does the RBF kernel perform best?

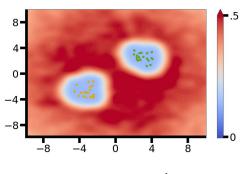
The analytic expression of the posterior variance for a **GP with RBF kernel** is reminiscent of:  $\mathbf{const.} - p(\boldsymbol{x})$ 



Can we obtain a similar behavior with BNNs?

The kernel induced by an **infinite-width RBF network** has promising properties<sup>3</sup>:

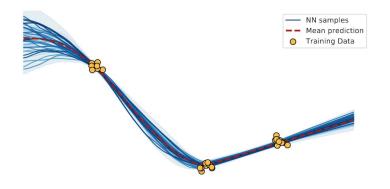
$$k(\boldsymbol{x}, \boldsymbol{x}') \propto \exp\left(-\frac{\|\boldsymbol{x}\|^2}{2\sigma_m^2}\right) \exp\left(-\frac{\|\boldsymbol{x}'\|^2}{2\sigma_m^2}\right) \exp\left(-\frac{\|\boldsymbol{x}-\boldsymbol{x}'\|^2}{2\sigma_s^2}\right)$$



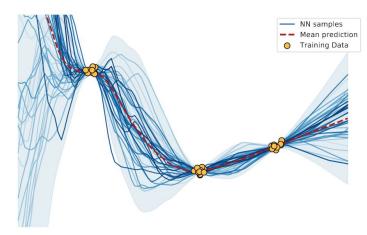
RBF network (width: 500)

## On the importance of the weight prior

- The infinite-width limit makes strong assumptions about the weight prior!
- But the induced prior in function space determines the OOD capabilities



width-aware prior: 
$$p(\boldsymbol{w}) = \mathcal{N}\Big(\mathbf{0}, \frac{1}{100}I\Big)$$



standard prior:  $p({m w}) = \mathcal{N}({m 0}, I)$ 

#### Summary & Conclusions

- The expected advantage of BNNs for OOD detection is not reflected in the experience researchers made in the past few years
  - We argue that this cannot be solely explained by the use of approximate inference
  - o Instead, we hypothesize that the **function space priors** induced by common **architectures** and/or **weight priors** are not suitable for OOD detection
- Our paper provides insights into this problematic and discusses possible future avenues to enhance the OOD capabilities of BNNs
- To "know what you don't know" should be a requirement when deploying AI, which calls for a thorough understanding under which conditions the use of BNNs for OOD detection is justified

# Thank you