

Are Bayesian neural networks intrinsically good at out-of-distribution detection?

UDL Workshop 2021

Christian Henning*, Francesco D'Angelo*, Benjamin F. Grewe

Francesco D'Angeld

Out-of-distribution (OOD) detection

We consider a supervised learning problem: $\mathcal{D} \overset{i.i.d.}{\sim} p(\boldsymbol{x}, \boldsymbol{y}) = p(\boldsymbol{x})p(\boldsymbol{y} \mid \boldsymbol{x})$

where the goal is to learn the parameters of a neural network $f(\cdot; m{w})$ such that, e.g.:

$$\mathbb{E}_{p(\boldsymbol{x})} \Big[\mathsf{KL} \Big(p(\boldsymbol{y} \mid \boldsymbol{x}) \Big| \Big| p \Big(\boldsymbol{y} \mid f(\cdot; \boldsymbol{w}) \Big) \Big) \Big] \approx 0$$
Data-generating process Model

Intuitively, an **OOD point** is an input that is unfamiliar (given the training data), for which we should abstain from making predictions with the learned model.

OOD detection via Bayesian Neural Networks (BNN)

Given a likelihood defined via a neural network and a chosen weight prior p(w) BNNs utilize Bayesian statistics to maintain a posterior $p(w \mid \mathcal{D})$

This allows them to capture both **aleatoric** (data-intrinsic) and **epistemic** (limited data availability) uncertainty.

Question: Can we use a BNN's uncertainty to approach the OOD problem?

The two ingredients for OOD detection via BNNs

1st ingredient: epistemic uncertainty

In this toy hypothesis class

 epistemic uncertainty on OOD data vanishes after seeing the data

The two ingredients for OOD detection via BNNs

2nd ingredient: rich hypothesis space

- Neural networks can be universal function approximators
- → Can we model a distribution over functions that agree on the seen data but disagree everywhere else?
- The chosen architecture and weight prior determine the induced prior in function space¹
- → We don't know how to choose an architecture to allow powerful function approximation
- → We don't know how much the chosen weight prior restricts the function approximation capabilities of the given architecture

Are BNNs good at OOD detection?

It seems widely assumed that proper Bayesian inference with neural networks leads to a model that "knows what it doesn't know".

→ For instance, OOD detection is a common benchmark to validate new approximate inference methods, implying that the true posterior is good at OOD

A formal understanding under which conditions BNNs are good at OOD detection is lacking to the best of our knowledge!

→ However, such theoretical basis would be desirable for safety-critical applications

Our work aims to create awareness about this problem!

Our approach to illustrate the problem

- For certain weight priors, neural networks converge to Gaussian processes (GP)
 in the infinite-width limit²
- Bayesian inference can be exact in this limit, which allows us to study the OOD capabilities of the true posterior
- We can use HMC on finite-width networks to verify whether the OOD behavior is consistent with the infinite-width case

Plots show epistemic uncertainty

2-layer ReLU (width: 20)

Why does the RBF kernel perform best?

The analytic expression of the posterior variance for a **GP with RBF kernel** is reminiscent of: $\mathbf{const.} - p(\boldsymbol{x})$

Can we obtain a similar behavior with BNNs?

The kernel induced by an **infinite-width RBF network** has promising properties³:

$$k(\boldsymbol{x}, \boldsymbol{x}') \propto \exp\left(-\frac{\|\boldsymbol{x}\|^2}{2\sigma_m^2}\right) \exp\left(-\frac{\|\boldsymbol{x}'\|^2}{2\sigma_m^2}\right) \exp\left(-\frac{\|\boldsymbol{x}-\boldsymbol{x}'\|^2}{2\sigma_s^2}\right)$$

RBF network (width: 500)

On the importance of the weight prior

- The infinite-width limit makes strong assumptions about the weight prior!
- But the induced prior in function space determines the OOD capabilities

width-aware prior:
$$p(\boldsymbol{w}) = \mathcal{N}\Big(\mathbf{0}, \frac{1}{100}I\Big)$$

standard prior: $p({m w}) = \mathcal{N}({m 0}, I)$

Summary & Conclusions

- The expected advantage of BNNs for OOD detection is not reflected in the experience researchers made in the past few years
 - We argue that this cannot be solely explained by the use of approximate inference
 - o Instead, we hypothesize that the **function space priors** induced by common **architectures** and/or **weight priors** are not suitable for OOD detection
- Our paper provides insights into this problematic and discusses possible future avenues to enhance the OOD capabilities of BNNs
- To "know what you don't know" should be a requirement when deploying AI, which calls for a thorough understanding under which conditions the use of BNNs for OOD detection is justified

Thank you