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Introduction

MAP solutions 

Figure 1: Bayesian CL approaches. While prior-
focused CL is constrained to regions of overlap
between task posteriors, posterior meta-replay can
learn individual posteriors.

Continual learning (CL) typically refers to the problem
of sequentially learning a set of tasks D1 . . . DT , where
Dt = {(xi, yi)}nt

i=1
iid∼ pt(x)pt(y | x).

Bayesian CL approaches commonly adopt a prior-focused
view [1, 2, 3] and rely on a recursive Bayesian update to
incorporate new tasks:

p(W | D1, D2) = p(D2 | W)p(W | D1)
p(D2 | D1)

(1)

However approximations q
(1:t)
θ (W) ≈ p(W | D1, . . . Dt) are

necessary and can lead to practical challenges.
Motivation Can we overcome the limitations of prior-focused by learning task-specific posteriors?

Methods

To address this problem, we propose posterior meta-replay, a new Bayesian CL framework that compresses
task-specific posteriors into a single shared meta-model.
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Figure 2: The (a) posterior meta-replay framework for CL with (b) explicit or (c) implicit approximate posterior distributions.

Task-specific posteriors are learned within a shared task-conditioned hypernetwork [4]
which generates posterior parameters θ(t) upon conditioning by the task-embedding e(t). By design, the
number of trainable parameters does not increase (i.e., dim(ψ) + Σtdim(e(t)) < dim(W)).
The choice of approximate posterior remains flexible and depends on a weight generator (WG)
parametrized by θ(t). The WG applies the reparametrization trick to sample from the approximate, which
can be, for instance, a simple mean-field Gaussian or an implicit distribution defined by a neural network.
Forgetting at the meta-level is prevented with the use of a meta-regularizer that ensures
that previously learned posteriors q

θ(t′,∗)(W) are not changed. The loss for task t thus becomes:
L(t)(ψ, E , D(t)) = Ltask(ψ, e(t), D(t)) + βΣt′<tD

q
θ(t′,∗)(W)||q

θ(t′)(W)
 (2)

The task with lowest predictive uncertainty is selected when processing unseen inputs.

Experiments
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Figure 3: 1D regression problem with (a) posterior
meta-replay and (b) prior-focused methods.

Simple 1D regression illustrates the pitfalls of
prior-focused learning.
While task-specific posteriors are easily learned with our ap-
proach (Fig. 3a), prior-focused approaches struggle to find
a single trade-off solution that successfully fits all three tasks
(Fig. 3b).
Maintaining parameter uncertainty is crucial for robust task inference.
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Figure 4: 2D binary classification problem. Input density map (a), and entropy
of the posterior distribution of the second task with posterior meta-replay for
(b) a Dirac distribution and (b) an implicit posterior.

A 2D classification problem highlights
that deterministic solutions display ar-
bitrary uncertainty away from the train-
ing data of the corresponding task (Fig.
4b), while introducing parameter uncer-
tainty can lead to high uncertainty out-
of-distribution (Fig. 4c), and enable
more robust task inference.

Table 1: Accuracies of SplitCIFAR-10 experiments (Mean ±
SEM in %, n = 10), during (TGiven-During) and at the end
of training when the task is given (TGiven-Final) or inferred
(TInfer-Final). PR denotes posterior meta-replay.

TGiven-During TGiven-Final TInfer-Final
EWC-growing N/A N/A 20.40 ± 0.95
PR-Dirac 94.59 ± 0.10 93.77 ± 0.31 54.83 ± 0.79
PR-Explicit 95.59 ± 0.08 95.43 ± 0.11 61.90 ± 0.66
PR-Implicit 94.25 ± 0.07 92.83 ± 0.16 51.95 ± 0.53
PR-Explicit-BW 95.59 ± 0.08 95.43 ± 0.11 92.94 ± 1.04
PR-Explicit-CS 95.15 ± 0.11 92.48 ± 0.13 64.76 ± 0.34
Exp-Replay N/A N/A 41.38 ± 2.80

Posterior meta-replay scales to CIFAR-10
We perform SplitCIFAR-10 experiments with a
Resnet-32. We observe improvements through the in-
corporation of epistemic uncertainty (i.e., PR-Dirac vs.
PR-Explicit). Compared to prior-focused methods,
our approach exhibits very little forgetting and im-
proved final accuracy. Also compared to competing
approaches like experience-replay, our approach shows
performance gains in task-agnostic settings. Perfor-
mance can be further improved through several exten-
sions (BW and CS).

Conclusion

Bayesian statistics provide a theoretical basis for continual learning algorithms. However, practical chal-
lenges arise through the necessary use of approximate inference. When learning a sequence of tasks, this
can be solved by having task-specific posteriors that are learned within a single shared meta-model. This
approach has much more flexibility, and performance can further benefit from improved task-inference.
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