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Introduction

Continual learning (CL) typically refers to the problem
of sequentially learning a set of tasks D; ..
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Bayesian CL approaches commonly adopt a prior-focused
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(1) Figure 1: Bayesian CL approaches. While prior-
focused CL is constrained to regions of overlap
Dt) are between task posteriors, posterior meta-replay can
learn individual posteriors.
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However approximations qg )(W) ~p(W | Dy, ...
necessary and can lead to practical challenges.

Motivation Can we overcome the limitations of prior-focused by learning task-specific posteriors?

Methods

To address this problem, we propose posterior meta-replay, a new Bayesian CL framework that compresses
task-specific posteriors into a single shared meta-model.
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Figure 2: The (a) posterior meta-replay framework for CL with (b) explicit or (c) implicit approximate posterior distributions.

Task-specific posteriors are learned within a shared task-conditioned hypernetwork 4]
which generates posterior parameters o' upon conditioning by the task-embedding e'¥). By design, the
number of trainable parameters does not increase (i.e., dim(1p) + ¥;dim(e'”)) < dim(W)).

The choice of approximate posterior remains flexible and depends on a weight generator (WG)
parametrized by 0" The WG applies the reparametrization trick to sample from the approximate, which
can be, for instance, a simple mean-field Gaussian or an implicit distribution defined by a neural network.

Forgetting at the meta-level is prevented with the use of a meta-regularizer that ensures
that previously learned posteriors qH@/,*)(W) are not changed. The loss for task ¢ thus becomes:
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The task with lowest predictive uncertainty is selected when processing unseen inputs.

Experiments

Simple 1D regression illustrates the pitfalls of ), = o  ©)y
prior-focused learning. NN
While task-specific posteriors are easily learned with our ap-
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proach (Fig. 3a), prior-focused approaches struggle to find 3 0 3 3 0 3
a single trade-oft solution that successtully fits all three tasks g6 3. 1p regression problem with (a) goster,-or

(Fig. 3b).

Maintaining parameter uncertainty is crucial for robust task inference.

meta-replay and (b) prior-focused methods.

A 2D classification problem highlights (), . - 0.6 (O)F
that deterministic solutions display ar- | = kg ek
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bitrary uncertainty away from the train- . g
ing data of the corresponding task (Fig. y - (;“ - 0
4h), while introducing parameter uncer- 1 1

tainty can lead to high uncertainty out- Figure 4: 2D binary classification problem. Input density map (a), and entropy
of-distribution (Fig. 40), and enable of the posterior distribution of the second task with posterior meta-replay for

more robust task inference (b) a Dirac distribution and (b) an implicit posterior.

Posterior meta-replay scales to CIFAR-10  Table 1: Accuracies of SplitCIFAR-10 experiments (Mean =+
We perform  SplitCIFAR-10 experiments with a SEMin %, n = 10), during (TGiven-During) and at the end

of training when the task is given ( TGiven-Final) or inferred
( TInfer-Final). PR denotes posterior meta-replay.

TGiven-During T'Given-Final TlInfer-Final

Resnet-32. We observe improvements through the in-
corporation of epistemic uncertainty (i.e., PR-Dirac vs.
PR-Explicit). Compared to prior-focused methods,

EWC-growing N/A N/A 20.40 4+ 0.95
our approach exhibits very little forgetting and im- g 04.50 + 0.10  93.77 + 0.31 54.83 £ 0.79
proved final accuracy. Also compared to competing pr_gxplicit 0559 & 0.08 9543 + 0.11 61.90 & 0.66
approaches like experience-replay, our approach shows PR-Implicit 04.25 £ 0.07 92.83 & 0.16 51.95 & 0.53
performance gains in task-agnostic settings. Perfor- PR-Explicit-BW  95.59 4+ 0.08 95.43 £ 0.11 92.94 £+ 1.04
mance can be further iHlpl”OVGd tthU.gh several exten- PR-Explicit-CS  95.15 & 0.11 9248 £ 0.13 64.76 4+ 0.34
SONS (BW and CS). Exp-Replay N/A N/A 41.38 £ 2.80

Conclusion

Bayesian statistics provide a theoretical basis for continual learning algorithms. However, practical chal-
lenges arise through the necessary use of approximate inference. When learning a sequence of tasks, this
can be solved by having task-specific posteriors that are learned within a single shared meta-model. This
approach has much more flexibility, and performance can further benefit from improved task-inference.
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